recipes.cpc3.baseline package
Submodules
recipes.cpc3.baseline.compute_haspi module
Compute the HASPI scores.
- recipes.cpc3.baseline.compute_haspi.compute_haspi_for_signal(record: dict, data_root: str, split: str) float [source]
Compute the HASPI score for a given signal.
- Parameters:
record (dict) – the metadata dict for the signal
signal_dir (str) – paths to where the HA output signals are stored
ref_dir (str) – path to where the reference signals are stored
- Returns:
HASPI score
- Return type:
float
- recipes.cpc3.baseline.compute_haspi.parse_signal_name(signal_name: str) dict [source]
Parse the signal name.
recipes.cpc3.baseline.evaluate module
Evaluate the predictions against the ground truth correctness values
- recipes.cpc3.baseline.evaluate.compute_scores(predictions, labels) dict [source]
Compute the scores for the predictions
- recipes.cpc3.baseline.evaluate.evaluate(cfg: DictConfig) None [source]
Evaluate the predictions against the ground truth correctness values
- recipes.cpc3.baseline.evaluate.kt_score(x: ndarray, y: ndarray) float [source]
Compute the Kendall’s tau correlation between two arrays
- recipes.cpc3.baseline.evaluate.ncc_score(x: ndarray, y: ndarray) float [source]
Compute the normalized cross correlation between two arrays
recipes.cpc3.baseline.predict_dev module
Make intelligibility predictions from HASPI scores.
recipes.cpc3.baseline.predict_train module
Make intelligibility predictions from HASPI scores.