E032 Sheffield

Python Modules

recipes.cpc1.e032_sheffield.evaluate

recipes.cpc1.e032_sheffield.infer

recipes.cpc1.e032_sheffield.prepare_data

Data preparation for the E032 Sheffield CPC1 recipe.

recipes.cpc1.e032_sheffield.train_asr

Recipe for training a Transformer ASR system with librispeech, from the SpeechBrain LibriSpeech/ASR recipe.

recipes.cpc1.e032_sheffield.transformer_cpc1_decoder

Decoding methods for seq2seq autoregressive model.

Configuration Files

config.yaml

 1path:
 2  root: ???
 3  cpc1_train_data: ${path.root}/clarity_CPC1_data_train/
 4  cpc1_test_data: ${path.root}/clarity_CPC1_data_test/
 5  exp_folder: ${path.root}/e032
 6
 7cpc1_track: closed # "closed" or "open"
 8dev_percent: 0.3 # amount of scenes for dev set
 9
10MSBGEar: # hyperparameters for MSBG ear
11  src_pos: ff
12  sample_rate: 44100
13  equiv_0db_spl: 100
14  ahr: 20
15
16asr_config: transformer_cpc1.yaml
17
18hydra:
19  output_subdir: Null
20  run:
21    dir: .
22  job:
23    chdir: True

transformer_cpc1.yaml

  1# ############################################################################
  2# Model: E2E ASR with Transformer
  3# Encoder: Transformer Encoder
  4# Decoder: Transformer Decoder + (CTC/ATT joint) beamsearch + TransformerLM
  5# Tokens: unigram
  6# losses: CTC + KLdiv (Label Smoothing loss)
  7# Training: Librispeech 960h
  8# Authors:  Jianyuan Zhong, Titouan Parcollet
  9# ############################################################################
 10# Seed needs to be set at top of yaml, before objects with parameters are made
 11seed: 8886
 12__set_seed: !apply:torch.manual_seed [!ref <seed>]
 13output_folder: !ref ???
 14wer_file: !ref <output_folder>/wer.txt
 15save_folder: !ref <output_folder>/save
 16train_log: !ref <output_folder>/train_log.txt
 17
 18# Language model (LM) pretraining
 19# NB: To avoid mismatch, the speech recognizer must be trained with the same
 20# tokenizer used for LM training. Here, we download everything from the
 21# speechbrain HuggingFace repository. However, a local path pointing to a
 22# directory containing the lm.ckpt and tokenizer.ckpt may also be specified
 23# instead. E.g if you want to use your own LM / tokenizer.
 24pretrained_lm_tokenizer_path: speechbrain/asr-transformer-transformerlm-librispeech
 25
 26# Data files
 27data_folder: !ref ???
 28train_splits: ["cpc1_train_binaural"]
 29dev_splits: ["cpc1_dev_binaural"]
 30test_splits: ["cpc1_train_left_dev", "cpc1_train_right_dev"]
 31skip_prep: True
 32train_csv: !ref <data_folder>/binaural_train_msbg.csv
 33valid_csv: !ref <data_folder>/binaural_dev_msbg.csv
 34test_csv:
 35   - !ref <data_folder>/left_dev_msbg.csv
 36   - !ref <data_folder>/right_dev_msbg.csv
 37ckpt_interval_minutes: 30 # save checkpoint every N min
 38
 39# Training parameters
 40# To make Transformers converge, the global bath size should be large enough.
 41# The global batch size is computed as batch_size * n_gpus * gradient_accumulation.
 42# Empirically, we found that this value should be >= 128.
 43# Please, set your parameters accordingly.
 44number_of_epochs: 120
 45batch_size: 16
 46ctc_weight: 0.3
 47gradient_accumulation: 4
 48gradient_clipping: 5.0
 49loss_reduction: 'batchmean'
 50sorting: random
 51
 52# stages related parameters
 53stage_one_epochs: 90
 54lr_adam: 1.0
 55lr_sgd: 0.000025
 56
 57# Feature parameters
 58sample_rate: 16000
 59n_fft: 400
 60n_mels: 80
 61
 62# Dataloader options
 63train_dataloader_opts:
 64    batch_size: !ref <batch_size>
 65    shuffle: True
 66
 67valid_dataloader_opts:
 68    batch_size: 1
 69
 70test_dataloader_opts:
 71    batch_size: 1
 72
 73####################### Model parameters ###########################
 74# Transformer
 75d_model: 768
 76nhead: 8
 77num_encoder_layers: 12
 78num_decoder_layers: 6
 79d_ffn: 3072
 80transformer_dropout: 0.0
 81activation: !name:torch.nn.GELU
 82output_neurons: 5000
 83vocab_size: 5000
 84
 85# Outputs
 86blank_index: 0
 87label_smoothing: 0.1
 88pad_index: 0
 89bos_index: 1
 90eos_index: 2
 91unk_index: 0
 92
 93# Decoding parameters
 94min_decode_ratio: 0.0
 95max_decode_ratio: 1.0
 96valid_search_interval: 10
 97valid_beam_size: 10
 98test_beam_size: 66
 99lm_weight: 0.00
100ctc_weight_decode: 0.40
101
102############################## models ################################
103
104CNN: !new:speechbrain.lobes.models.convolution.ConvolutionFrontEnd
105    input_shape: (8, 10, 80)
106    num_blocks: 3
107    num_layers_per_block: 1
108    out_channels: (128, 256, 512)
109    kernel_sizes: (3, 3, 1)
110    strides: (2, 2, 1)
111    residuals: (False, False, False)
112
113Transformer: !new:speechbrain.lobes.models.transformer.TransformerASR.TransformerASR # yamllint disable-line rule:line-length
114    input_size: 10240
115    tgt_vocab: !ref <output_neurons>
116    d_model: !ref <d_model>
117    nhead: !ref <nhead>
118    num_encoder_layers: !ref <num_encoder_layers>
119    num_decoder_layers: !ref <num_decoder_layers>
120    d_ffn: !ref <d_ffn>
121    dropout: !ref <transformer_dropout>
122    activation: !ref <activation>
123    normalize_before: False
124
125# This is the TransformerLM that is used according to the Huggingface repository
126# Visit the HuggingFace model corresponding to the pretrained_lm_tokenizer_path
127# For more details about the model!
128# NB: It has to match the pre-trained TransformerLM!!
129lm_model: !new:speechbrain.lobes.models.transformer.TransformerLM.TransformerLM # yamllint disable-line rule:line-length
130    vocab: !ref <output_neurons>
131    d_model: 768
132    nhead: 12
133    num_encoder_layers: 12
134    num_decoder_layers: 0
135    d_ffn: 3072
136    dropout: 0.0
137    activation: !name:torch.nn.GELU
138    normalize_before: False
139
140tokenizer: !new:sentencepiece.SentencePieceProcessor
141
142ctc_lin: !new:speechbrain.nnet.linear.Linear
143    input_size: !ref <d_model>
144    n_neurons: !ref <output_neurons>
145
146seq_lin: !new:speechbrain.nnet.linear.Linear
147    input_size: !ref <d_model>
148    n_neurons: !ref <output_neurons>
149
150modules:
151    CNN: !ref <CNN>
152    Transformer: !ref <Transformer>
153    seq_lin: !ref <seq_lin>
154    ctc_lin: !ref <ctc_lin>
155
156model: !new:torch.nn.ModuleList
157    - [!ref <CNN>, !ref <Transformer>, !ref <seq_lin>, !ref <ctc_lin>]
158
159# define two optimizers here for two-stage training
160Adam: !name:torch.optim.Adam
161    lr: 0
162    betas: (0.9, 0.98)
163    eps: 0.000000001
164
165SGD: !name:torch.optim.SGD
166    lr: !ref <lr_sgd>
167    momentum: 0.99
168    nesterov: True
169
170valid_search: !new:speechbrain.decoders.S2STransformerBeamSearch
171    modules: [!ref <Transformer>, !ref <seq_lin>, !ref <ctc_lin>]
172    bos_index: !ref <bos_index>
173    eos_index: !ref <eos_index>
174    blank_index: !ref <blank_index>
175    min_decode_ratio: !ref <min_decode_ratio>
176    max_decode_ratio: !ref <max_decode_ratio>
177    beam_size: !ref <valid_beam_size>
178    ctc_weight: !ref <ctc_weight_decode>
179    using_eos_threshold: False
180    length_normalization: False
181
182
183test_search: !new:speechbrain.decoders.S2STransformerBeamSearch
184    modules: [!ref <Transformer>, !ref <seq_lin>, !ref <ctc_lin>]
185    bos_index: !ref <bos_index>
186    eos_index: !ref <eos_index>
187    blank_index: !ref <blank_index>
188    min_decode_ratio: !ref <min_decode_ratio>
189    max_decode_ratio: !ref <max_decode_ratio>
190    beam_size: !ref <test_beam_size>
191    ctc_weight: !ref <ctc_weight_decode>
192    lm_weight: !ref <lm_weight>
193    lm_modules: !ref <lm_model>
194    temperature: 1
195    temperature_lm: 1
196    using_eos_threshold: False
197    length_normalization: True
198
199log_softmax: !new:torch.nn.LogSoftmax
200    dim: -1
201
202ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
203    blank_index: !ref <blank_index>
204    reduction: !ref <loss_reduction>
205
206seq_cost: !name:speechbrain.nnet.losses.kldiv_loss
207    label_smoothing: !ref <label_smoothing>
208    reduction: !ref <loss_reduction>
209
210noam_annealing: !new:speechbrain.nnet.schedulers.NoamScheduler
211    lr_initial: !ref <lr_adam>
212    n_warmup_steps: 25000
213    model_size: !ref <d_model>
214
215checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
216    checkpoints_dir: !ref <save_folder>
217    recoverables:
218        model: !ref <model>
219        noam_scheduler: !ref <noam_annealing>
220        normalizer: !ref <normalize>
221        counter: !ref <epoch_counter>
222
223epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
224    limit: !ref <number_of_epochs>
225
226normalize: !new:speechbrain.processing.features.InputNormalization
227    norm_type: global
228    update_until_epoch: 4
229
230augmentation: !new:speechbrain.lobes.augment.SpecAugment
231    time_warp: True
232    time_warp_window: 5
233    time_warp_mode: bicubic
234    freq_mask: True
235    n_freq_mask: 2
236    time_mask: True
237    n_time_mask: 2
238    replace_with_zero: False
239    freq_mask_width: 30
240    time_mask_width: 40
241
242speed_perturb: !new:speechbrain.processing.speech_augmentation.SpeedPerturb
243    orig_freq: !ref <sample_rate>
244    speeds: [95, 100, 105]
245
246compute_features: !new:speechbrain.lobes.features.Fbank
247    sample_rate: !ref <sample_rate>
248    n_fft: !ref <n_fft>
249    n_mels: !ref <n_mels>
250
251train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
252    save_file: !ref <train_log>
253
254error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
255acc_computer: !name:speechbrain.utils.Accuracy.AccuracyStats
256
257# The pretrainer allows a mapping between pretrained files and instances that
258# are declared in the yaml. E.g here, we will download the file lm.ckpt
259# and it will be loaded into "lm" which is pointing to the <lm_model> defined
260# before.
261pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
262    collect_in: !ref <save_folder>
263    loadables:
264        lm: !ref <lm_model>
265        tokenizer: !ref <tokenizer>
266    paths:
267        lm: !ref <pretrained_lm_tokenizer_path>/lm.ckpt
268        tokenizer: !ref <pretrained_lm_tokenizer_path>/tokenizer.ckpt