Source code for recipes.cpc3.baseline.predict_dev

"""Make intelligibility predictions from HASPI scores."""

from __future__ import annotations

import logging

import hydra
from omegaconf import DictConfig

from recipes.cpc3.baseline.shared_predict_utils import (
    LogisticModel,
    load_dataset_with_haspi,
)

log = logging.getLogger(__name__)


# pylint: disable = no-value-for-parameter
[docs] @hydra.main(config_path=".", config_name="config", version_base=None) def predict_dev(cfg: DictConfig): """Predict intelligibility from HASPI scores.""" # Load the data log.info("Loading dataset...") records_train_df = load_dataset_with_haspi(cfg, "train") records_dev_df = load_dataset_with_haspi(cfg, "dev") # Compute the logistic fit log.info("Making the fitting model...") model = LogisticModel() model.fit(records_train_df.haspi_score, records_train_df.correctness) # Make predictions for all items in the dev data log.info("Starting predictions...") records_dev_df["predicted_correctness"] = model.predict(records_dev_df.haspi_score) # Save results to CSV file output_file = f"{cfg.dataset}.dev.predict.csv" records_dev_df[["signal", "predicted_correctness"]].to_csv( output_file, index=False, header=["signal_ID", "intelligibility_score"], mode="w", ) log.info(f"Predictions saved to {output_file}")
if __name__ == "__main__": predict_dev()