recipes.cad2.task2.baseline package¶
Submodules¶
recipes.cad2.task2.baseline.enhance module¶
recipes.cad2.task2.baseline.evaluate module¶
Evaluate the enhanced signals using the HAAQI metric.
- recipes.cad2.task2.baseline.evaluate.adjust_level(signal: ndarray, gains_scene: dict) ndarray [source]¶
Adjust the level of the signal to compensate the effect of amplifying the sources
- recipes.cad2.task2.baseline.evaluate.apply_gains(stems: dict, sample_rate: float, gains: dict) dict [source]¶
Apply gain to the signal by using LUFS.
- Parameters:
stems (dict) – Dictionary of stems.
sample_rate (float) – Sample rate of the signal.
gains (dict) – Dictionary of gains.
- Returns:
Dictionary of stems with applied gains.
- Return type:
dict
- recipes.cad2.task2.baseline.evaluate.load_reference_stems(music_dir: str | Path, stems: dict) dict[Any, ndarray] [source]¶
Load the reference stems for a given scene.
- Parameters:
music_dir (str | Path) – Path to the music directory.
stems (dict) – Dictionary of stems
- Returns:
Dictionary of reference stems.
- Return type:
dict
- recipes.cad2.task2.baseline.evaluate.make_scene_listener_list(scenes_listeners: dict, small_test: bool = False) list [source]¶
Make the list of scene-listener pairing to process
- Parameters:
scenes_listeners (dict) – Dictionary of scenes and listeners.
small_test (bool) – Whether to use a small test set.
- Returns:
List of scene-listener pairings.
- Return type:
list
- recipes.cad2.task2.baseline.evaluate.remix_stems(stems: dict) ndarray [source]¶
Remix the stems into a stereo signal.
The remixing is done by summing the stems.
- Parameters:
stems (dict) – Dictionary of stems.
- Returns:
Stereo signal.
- Return type:
ndarray
recipes.cad2.task2.baseline.merge_batches_results module¶
Join batches scores into a single file.