recipes.cpc2.baseline package¶
Submodules¶
recipes.cpc2.baseline.compute_haspi module¶
Compute the HASPI scores.
- recipes.cpc2.baseline.compute_haspi.compute_haspi_for_signal(signal_name: str, path: dict) float [source]¶
Compute the HASPI score for a given signal.
- Parameters:
signal (str) – name of the signal to process
path (dict) – paths to the signals and metadata, as defined in the config
- Returns:
HASPI score
- Return type:
float
- recipes.cpc2.baseline.compute_haspi.parse_cec2_signal_name(signal_name: str) tuple[str, str, str] [source]¶
Parse the CEC2 signal name.
recipes.cpc2.baseline.evaluate module¶
Evaluate the predictions against the ground truth correctness values
- recipes.cpc2.baseline.evaluate.compute_scores(predictions, labels) dict [source]¶
Compute the scores for the predictions
- recipes.cpc2.baseline.evaluate.evaluate(cfg: DictConfig) None [source]¶
Evaluate the predictions against the ground truth correctness values
- recipes.cpc2.baseline.evaluate.kt_score(x: ndarray, y: ndarray) float [source]¶
Compute the Kendall’s tau correlation between two arrays
- recipes.cpc2.baseline.evaluate.ncc_score(x: ndarray, y: ndarray) float [source]¶
Compute the normalized cross correlation between two arrays
recipes.cpc2.baseline.predict module¶
Make intelligibility predictions from HASPI scores.
- class recipes.cpc2.baseline.predict.LogisticModel[source]¶
Bases:
object
Class to represent a logistic mapping.
Fits a logistic mapping from input values x to output values y.
- params: np.ndarray | None = None¶