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Abstract
We propose a speech intelligibility (SI) prediction method for
the first Clarity Prediction Challenge (CPC1), which combines
Conformer-based deep neural networks (DNNs) and the CPC1
baseline system. The DNN receives text, speech audio, and
listener characteristics (audiogram, etc.) as its inputs and di-
rectly estimates the SI scores of the given speech. Then, we
take an ensemble average of the SI scores obtained with the 10-
best DNN models selected using our defined development set
and the CPC1 baseline system. In experiments using the devel-
opment set, the proposed method outperforms the baseline for
both track 1 and track 2 scenarios.

1. Introduction
The first Clarity Prediction Challenge (CPC1) explores meth-
ods to predict speech intelligibility (SI) scores of noisy speech
processed by hearing aids. The SI score is defined as the cor-
rect recognition rate (correctness) of words comprehended by
hearing aid users. CPC1 organizers collected SI scores of the
processed noisy speech samples from the users, and CPC1 par-
ticipants develop methods to predict the SI scores with the lis-
tener characteristics of the users. For the development, the par-
ticipants can also use clean and processed speech audio sig-
nals, correct transcriptions, and the word sequences recognized
by the users. This report describes our proposed method, a
learning-based deep neural network model, which directly pre-
dicts the SI scores by fusing all the data provided for CPC1
except for the hearing loss model.

2. Proposed method
To predict the SI scores, our proposed DNN model receives four
kinds of inputs, transcriptions, outputs from a hearing aid (HA),
clean speech signals convolved with the anechoic binaural room
impulse responses (AE), and listener characteristics. Figure1
shows the structure of our DNN model. To improve prediction,
we take an ensemble average of the prediction scores from the
multiple DNN models, which were trained by varying the hyper
parameters, and that from the baseline system 1.

2.1. Conformer-based word correct/incorrect prediction
One characteristic of our DNN model is that it receives a se-
quence of word IDs corresponding to a correct transcription.
With a sequence, since the DNN is aware of the number of
words, the DNN model can predict binary labels for each word
to indicate whether a word in a transcription is recognized cor-

1https://github.com/claritychallenge/clarity CC/tree/master/clarity CPC1
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Figure 1: Structure of prediction model
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Figure 2: Audio feature extractor: It integrates three features of
Mel-fbank, phase, and output of self supervised model.

rectly or incorrectly by an user. We call the label as cor-
rect/incorrect label.

Regarding the model structure, we adopted Conformer [1],
which is also known as the state-of-the-art end-to-end automatic
speech recognition model. It can handle two feature sequences
with different lengths, i.e., word IDs and the HA. The encoder
receives the HA and the decoder receives word IDs, and then
our DNN model yields a sequence that represents the probabil-
ity whether each word is correct/incorrect.

For inference mode, we count the number of words with the
probability of being ”correct” exceeding 0.5, and divide it by the
total number of words to obtain the predicted correctness.

2.2. Audio feature extractor
Our audio feature extractor consists of three components, Mel
filterbank, phase feature extractor, and a self-supervised model
(Wav2Vec2 [2] or Hubert [3]). Figure 2 shows how three fea-
tures are integrated.

We adopted a pre-trained model in S3PRL2 for the self-
supervised model and froze its parameters during our DNN
model training.

2https://github.com/s3prl/s3prl
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Figure 3: DNN Block to input listener characteristics

For the phase features, we used the phase difference be-
tween two microphones of each ear, i.e, sin(θ1,f,t − θ0,f,t)
and cos(θ1,f,t − θ0,f,t), and the phase change over time, i.e.,
sin(θ0,f,t+1 − θ0,f,t) and cos(θ0,f,t+1 − θ0,f,t), where θc,f,t
is the phase of the audio signal in time-frequency domain, and
c ∈ {0, 1}, f , and t denote the microphone channel at each ear,
the frequency index and the time-frame index, respectively.

We concatenated the above three features extracted from
each ear microphone, and added them to the convolution layer.

2.3. DNN structure to input clean speech

We also fed the AE into our DNN. As the DNN layer into which
we input the AE, we compared two cases: before the Conformer
encoder or after the Conformer decoder. In the former case, the
HA and AE features were simply concatenated, because their
feature sequences had the same length. In the latter case, we
used an additional Conformer DNN to handle two series of dif-
ferent lengths, the AE feature sequence and the Conformer de-
coder output.

2.4. DNN structure to input listener characteristics

We used all six listener characteristics provided by CPC1: au-
diogram, SSQ12, GHAPB, DTT, age, and gender. For track 1
(listener seen), we also utilized the listener ID. The details of
each characteristic are described in the CPC1 documentation 3.

Figure 3 illustrates the DNN structure for these listener
characteristics. For the audiogram, SSQ12, GHAPB and age,
we used the given values without changing them. For the DTT,
the threshold value was used as a 1-dim. feature, and and the
gender was treated as a binary label and input to DNN using an
embedding layer.

As with the way of the AE input, we compared two in-
put layers, i.e., before the Conformer encoder or after the Con-
former decoder.

2.5. Multi task learning

In addition to the correct/incorrect label prediction for each
word (§2.1), we also introduced a loss to directly predict a scalar
correctness, called correctness loss, and system label classifica-
tion loss to exploit multi-task learning.
Correct/incorrect classification loss: We input the cor-
rect/incorrect probability for each word to a classification loss
function.
Correctness loss: We used the mean of the ”correct” probabil-
ity for each word as the predicted correctness and input it to a
regression loss function.
System label classification loss: A system label distinguishes
ten hearing aid systems used in CPC1. Since the response by
each user depends on the audio quality of each system, we also
make our DNN being aware of the system differences. We de-
rived a predicted system label by inputting the Conformer en-
coder output averaged over the time frames to a linear DNN
predictor and compute a classification loss for the system label.

3https://claritychallenge.github.io/clarity CPC1 doc

2.6. Ensemble method

We created approximately 5,000 models with different hyper-
parameters, and selected the 10-best models from them using
the evaluation results for our development set.

We averaged the predicted correctness for each sample by
the selected 10-best models and the baseline model4 with equal
weights to ensemble these models. This is our submission sys-
tem: “Baseline + 10 best ens.”.

3. Data and resources
3.1. Data set

Our DNN model was trained using the data provided by CPC1.
As an external corpus, the LibriSpeech corpus [5] was used to
train the self supervised model in our feature extractor (§2.2).

CPC1 has closed(track1) and open(track2) scenarios. The
evaluation data in the closed track were obtained only from
hearing aid systems and listeners that are seen in the training
dataset. In contrast, either one of or both systems and listeners
in the open track are unseen in the training dataset.

To define the training (train) and development (dev) sets for
each track, we divided the training/development dataset pro-
vided by CPC1 into two sets, so that both sets include all the
combinations of hearing aid systems and listeners. This means
that our dev set had a closed condition (both listener and system
were seen in our train set), even for evaluating of track2. The
data sizes of our train and dev sets were 2510 and 2353 for track
1, and 1847 and 1733 for track 2, respectively.

The correct/incorrect labels were obtained based on DP
matching between the word sequences of the correct transcrip-
tions and the recognized word sequence by the users. The
speech data were downsampled to 16 kHz.

3.2. Data augmentation

To train our DNN model, we adopted three data augmentation
techniques, speed/volume perturbation, time/frequency mask-
ing in STFT domain, and channel shuffling.

For the speech and volume perturbation, we used sox 5 to
modify the speed by a factor between 0.95 and 1.05 and the
amplitude by a factor between 0.8 and 1.0. We used the same
factors for the augmentation of the HA and AE augmentation.

As for the time/frequency masking, we followed a method
from SpecAug [6] and set the mask parameters for time
and frequency at 20 and 30 and the number of masks at 2.
Time/frequency masking was applied only to HA.

We performed channel shuffling by switching the left and
right channels in HA, AE, and the audiograms.

3.3. Computational requirements

For training, we used Intel®Xeon®CPU E5-2630 v4 @ 2.20
GHz (total memory of 378 GB) and GeForce RTX 2080 Ti.
Training required about 3 hours for training. For inference
mode, it takes about five seconds per sample when using CPU.

4. Result
Table 1 summarizes the root mean square error (RMSE) of the
predicted SI score. We also evaluated Pearson’s correlation

4Regarding the baseline, we determined the parameters of the logis-
tic function for mapping the MBSTOI [4] measure to the speech intelli-
gibility score by using our train set.

5http://sox.sourceforge.net/



Table 1: Experimental results for dev-set

Track 1 (closed) Track 2 (open)
RMSE PCC SRC RMSE PCC SRC

Baseline 29.34 0.62 0.55 28.21 0.68 0.57
1 best 26.29 0.71 0.62 26.16 0.73 0.60
10best ens. 26.00 0.72 0.64 24.93 0.75 0.65
Baseline + 10best ens. 25.69 0.73 0.65 24.77 0.76 0.66

coefficient (PCC) and Spearman’s rank correlation coefficient
(SRC).

For both tracks, the performance of the 1 best model ex-
ceeds the baseline performance in all the evaluation measures.
The ensemble of the 10-best models further improved the per-
formance, and our submission model, “Baseline + 10best ens.”,
provided the best prediction of the SI score. Note that our dev
set for track 2 was not an open set as described in Sec. 3.1.
Our submission to CPC1 was ”Baseline + 10best ens. ”, whose
RMSEs for CPC1 eval-sets of tracks 1 and 2 were 23.97% and
29.20%, respectively.

5. Conclusion
We proposed a Conformer based prediction model that fuses
audio, transcription, and all the provided listener characteris-
tic (audiogram, SSQ12, GHAPB, DTT, age, gender) and our
model outperformed the CPC1 baseline system for our develop-
ment set. We created approximately 5000 models with different
hyper-parameters and achieved better results using the 10-best
ensemble models by averaging the predicted correctness of each
model. Finally, we obtained further improvement by appending
the baseline system to these DNN models and we concluded
this ensemble model is our best model. Please also refer to our
paper submitted to Interspeech [7] for more details of our DNN
model.
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