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Abstract
Most existing speech intelligibility measures are either designed
for single-channel applications – hence unsuited to evaluate
hearing aid algorithms – or intrusive, applicable only in sim-
ulated scenarios in which the clean signal is available. Non-
intrusive speech intelligibility measures able to reliably predict
speech intelligibility without knowledge of the clean signal are
urgently needed. This paper proposes a non-intrusive measure
that predicts speech intelligibility using only the processed sig-
nal and audiogram of the listener as input. The proposed mea-
sure relies on three steps, namely a hearing-loss model, a VQ-
CPC feature extractor and a predicting function. The hearing
loss model uses the target signal and the listener’s audiogram as
input while the feature extractor and the predicting function are
trained on processed signals labeled in terms of speech intel-
ligibility during a listening test. The evaluation is conducted
using training and testing sets defined for both tracks of the
first Clarity Prediction Challenge (CPC1). Results show that de-
spite encouraging results obtained by training VQ-CPC on large
amounts of data, the measure is here instead outperformed by
the considered benchmark.
Index Terms: non-intrusive speech intelligibility prediction;
self-supervised learning; contrastive predictive coding

1. Introduction
The number of people suffering from hearing loss is rapidly in-
creasing and despite the progress in hearing aid technology, the
problem of hearing aid processing of speech-in-noise remains
challenging. One of the many aspects to be addressed in order
to solve this issue, is the improvement of the SI measures used
to evaluate speech enhancement algorithms. SI represents the
ability of listeners to understand speech from signals degraded
by noise, reverberation or even processing artefacts. It is of-
ten reported using the speech reception threshold (SRT) mea-
sured during listening tests [1]. Though typically considered
as the gold standard of SI measurements, these tests are costly,
time-consuming and often not feasible, e.g., when online es-
timation of SI is necessary. Consequently, many signal-based
measures have been developed. These measures aim at estimat-
ing SI without the need for listening tests and can be broadly
categorized as being either intrusive or non-intrusive [2]. Intru-
sive measures are computed using both a clean reference sig-
nal and a test signal as input, whereas non-intrusive measures
can be computed from the test signal alone. Additionally, SI in
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signals processed for hearing aid applications largely depends
on the presence of binaural cues [3] and measures should be
developed for this use case. A reliable non-intrusive SI mea-
sure applicable to binaural signals would facilitate the evalua-
tion of binaural speech enhancement algorithms in realistic set-
tings and allow for a better automatic selection of hearing aids
parameters.

Most signal-based measures of SI are however designed
to be applied only to single-channel signals. Examples of in-
trusive single-channel SI measures include the articulation in-
dex [4], the speech transmission index (STI) [5], the speech in-
telligibility index (SII) [6], the short-time objective intelligibil-
ity (STOI) [7] and mutual-information-based techniques, such
as the algorithm proposed in [8]. Several non-intrusive single-
channel SI measures have been designed as extensions of the
STOI [9, 10], relying on estimating the amplitude envelope of
the clean speech from the input signal. Others, such as the
speech-to-reverberation modulation energy ratio (SRMR) [11]
and its extension the normalized SRMR (SRMRnorm) [12]
apply a predicting function on perceptually motivated fea-
tures extracted from the target signal. SI measures that have
been proposed for binaural scenarios include the use combi-
nation of equalization-cancellation (EC) models [13] with the
SII [14, 15]. The binaural STOI (BSTOI), later refined into the
deterministic BSTOI (DBSTOI), uses an EC model to combine
both channels of the binaural signal into a single-channel sig-
nal used as input to the STOI measure [16]. Both BSTOI and
DBSTOI are intrusive.

More recently, proposed SI measures rely on the progress
in machine learning techniques. This can entail the use of an
automatic speech recognizer (ASR), as proposed in [17, 18].
Aiming at non-intrusive prediction, the method in [19], applies
the binaural preprocessing stage from [20] to process the bin-
aural signal before using it as input to the ASR. The SI is after-
wards predicted by applying mapping between the mean tem-
poral distance (MTD) – a representation of the ASR error [21]
– and the SRT. Most machine learning based approaches do not
rely on an ASR but rather on a set of features input to a deep
neural network. This is the case, for example, in [22], where a
neural network predicts SI from a sequence of spectral features,
in [23], where both short- and long-term features are input to a
classification and regression tree or in [24] , where STOI like
features are input to a convolutional neural network [24]. We
recently proposed to predict SI from binaural signals by using
features computed as a latent representation of the signal as in-
put to a deep learning based SI predictor [25]. These features
are computed using a combination of contrastive predictive cod-
ing (CPC) [26] and vector quantization (VQ) [27] methods and
referred to as VQ-CPC features.

The use of machine learning for SI has however often been
burdened by the lack of large datasets of binaural signals labeled



in terms of SI. Thanks to the development of the first Clarity
Prediction Challenge (CPC1) [28], such dataset is now avail-
able to develop and compare SI measures. Taking advantage
of this opportunity, the work presented in this paper has two
goals. First it aims to confirm the suitability of VQ-CPC fea-
tures for SI prediction from binaural signals. Second, it aims
at developing a reliable non-intrusive SI measure that could be
used in hearing aids applications. For this purpose, the VQ-
CPC features are computed from signals pre-processed using
an hearing-loss model before being input to a predicting func-
tion that improves on the one that we originally used in [25].
The measure is evaluated in terms of root mean-squared error
(RMSE) and correlation and benchmarked against intrusive and
non-intrusive measures that are combined with the same hearing
loss model and a simple (trained) sygmoidal mapping. Results
show that the proposed measure, despite previous encouraging
results of VQ-CPC features, is outperformed by the considered
benchmark, including the CP1 baseline, in terms of both corre-
lation and RMSE.

The remainder of this paper is structured as follows. The
proposed non-intrusive SI measure is described in Section 2.
The experiments and considered benchmark, based on the
CPC1 dataset, are described in Section 3. The results and their
discussion are presented in Section 4. Section 5 concludes the
paper.

2. Proposed approach
The non-intrusive SI measure that is proposed in this paper aims
to evaluate speech intelligibility. Specifically, the SI of a listener
with hearing loss when exposed to a noisy reverberant signal
processed through some hearing aid processing algorithms. The
measure is computed from the audiogram of the target listener
and the processed binaural signal ym(n), where n and m ∈
[0, 1] denote the sample and channel index, respectively. This
computation is done in three steps, presented in the following
subsections.

2.1. Hearing loss model

SI is largely dependent on the type and severity of the hear-
ing loss in the target listener. To take this into account, a hear-
ing loss simulator using the Moore, Stone, Baer and Glasberg
(MSBG) hearing loss model is used. This model is based on the
work of the Cambridge Auditory Group [29, 30, 31, 32]. The
implementation provided with the software of the CPC1 base-
line [33] is used in this paper. The signal ym(n) is processed in
the gammatone filterbank domain to simulate the four main as-
pects of hearing loss, namely the raised auditory thresholds, the
reduced dynamic range and the lower temporal and frequency
resolution. The audiogram of the target listener is used to atten-
uate the signal in each frequency band according to their hearing
loss. The loss in temporal and frequency resolution is modelled
through frequency smearing whose amount is dependant on the
severity of the listener’s hearing loss as described in [28]. The
application of this hearing loss model is the only part of the
proposed non-intrusive measure that is listener dependent. The
output of this stage is a two channel signal xm(n) from which
VQ-CPC features are extracted.

2.2. Feature extraction

VQ-CPC features are computed from the two-channel signal
xm(n) using the approach that we recently proposed in [25].

The microphone signal is divided into T = dN/He over-

lapping frames of length W , where H denotes the hop length.
The samples in each tth frame are used to construct a vector of
length 2 ·W :

xt =
[
x0(tH), . . . , x1(tH +W − 1)

]T (1)

resulting in the time-ordered sequence of T vectors:

x =
{
x0, x1, . . . , xT−1

}
. (2)

The feature computation results in the sequence:

c =
{
c0, c1, . . . , cT−1

}
, (3)

where ct denotes the vector of length K feature coefficients ex-
tracted from the tth frame. The feature extractor is trained and
learns to extract sequences c that maximise the mutual informa-
tion between the input and output sequences:

I(x; c) =
∑
x,c

p (x, c) log

(
p (x|c)
p (x)

)
. (4)

To do so, VQ and CPC methods are used to compute the
sequence c as a latent representation of the input sequence
x [34, 26]. This computation requires training of a feature ex-
traction using a large amount of binaural signals. It should how-
ever be emphasised that these signals do not need to be labeled
and no assumption about the downstream task of SI prediction
is made during feature computation or extractor training. The SI
is finally estimated by using the sequence c as input to a trained
predicting function.

We use a larger VQ-CPC model than in our original
work [25]. Like before, we train on windows of audio con-
sisting of T = 40960 samples, and with an encoder model
comprised of convolutional blocks formed of a one dimensional
convolutional layer with 256 filters, a dropout layer [35], batch
normalisation [36], and a rectified linear unit (ReLU) activa-
tion function. However, the number of blocks is increased
from 5 to 7, with strides [5, 4, 2, 2, 2, 1, 1] and kernel sizes of
[10, 8, 4, 4, 4, 1, 1].

The VQ codebook contains 512 codewords each of dimen-
sionality 128, using a k-means strategy to select codewords
given the encoder output [34]. The aggregator network is im-
plemented as a two-layer gated recurrent neural network (GRU)
with 128 hidden channels – identical to the VQ codebook di-
mensionality. The InfoNCE [26] loss is computed using 10 neg-
ative samples and k = 12 steps. We also apply limited data aug-
mentation, including random channel and polarity swapping,
additive noise and random audio gain [25]. Despite these aug-
mentations affecting the intelligibility of the signal, this does
not affect VQ-CPC training as it uses x alone to train – not any
intelligibility labels.

These parameters gives an effective frame length and hop
size of the whole model of 25 ms and 10 ms respectively, giving
a sequence c with K = 128. Overall, the parameters of the VQ-
CPC model are identical to those in our original work [25] with
the exception of an expanded encoder network.

2.3. Predicting function

Given a new dataset of latent features c extracted from the
trained VQ-CPC and associated intelligibility scores, we train
a predicting function implemented as a lightweight neural net-
work that controls global pooling [37], and a second neural net-
work that makes a final prediction based off the pooled repre-
sentation. This approach follows the “Pool” approach outlined



Table 1: Overview of the Train and Test Datasets for both tracks
of CPC1

Track 1 Track 2
Train Test Train Test

Number of signals 4863 2421 3580 632
Total duration in hours 8.2 4.1 6.0 1.1
Number of algorithms 27 27 22 27
Number of listeners 10 10 9 10

in our previous work [25] inspired by sequence pooling strate-
gies in low-data training regimes of vision transformers [37].
Our previous work also proposed a variation that predicted in-
telligibility per frame, then averaged the per-frame scores to
produce a final prediction. This had an advantage of allow-
ing for a per-frame breakdown of the perceived intelligibility,
however it ultimately had worse performance than the pooling
strategy [25]. Hence, as we are aiming at high performance in a
competition scenario, we selected the pooling approach.

For each frame in c, a shared linear layer computes a scalar
value. All weightings are then collected and softmax function
is applied, forming normalised weightings. A weighted average
of all frames is then computed, subsequently creating a global
representation. This representation is fed into a multi-layer per-
ceptron (MLP) and predicts the final intelligibility score, scaled
to be between 0 and 1 [25] using the sigmoid activation func-
tion. The weighting mechanism allows the predicting function
to assign relative importance in predicting speech intelligibility
to each frame, rather than simply taking a naı̈ve average of all
frames.

The network is trained to minimise the mean-squared er-
ror (MSE) loss between the estimated and true speech intelli-
gibility score. Building on our prior work, we tried more so-
phisticated predicting functions which incorporated deep con-
volutional networks and transformer architectures, but found
the limited dataset size meant these more powerful architectures
were prone to overfitting the training dataset due to its compar-
atively small size. Hence, we found the simple predicting func-
tions introduced in our earlier work to work best. We consider
two variations, one with a hidden layer size of 256 and a second
with a hidden layer size of 512, which are denoted “Small” and
“Large” predictors respectively.

3. Experiments
3.1. Used datasets

Training and evaluation of the proposed non-intrusive SI mea-
sure is done using the CPC1 dataset. The data consist of binau-
ral signals that have been generated by convolving clean ane-
choic speech with various binaural room impulse responses
(RIRs), adding noise at various signal-to-noise ratios (SNRs)
and processing the resulting noisy and reverberant signal with
speech enhancement algorithms designed for hearing aids. All
signals have been labeled in terms of speech intelligibility in a
listening test and in which the audiogram of each listener has
also been measured. An overview of the dataset is presented
in Table 1 but the interested reader can refer [28] for further
details.

The proposed SI measure is evaluated on both track 1 and
track 2 in order to examine the difference in performance when
applied to unknown algorithms or listeners. In track 1, all lis-
teners and algorithms are represented in both training and test

sets. In track 2, five of the listeners and two of the algorithms
present in the test set are absent in from the training set. For
all signals in the test set of track 2 the algorithm, or listener, or
both, are not present in the training set. In our previous work,
we found the VQ-CPC feature extractor to transfer well to un-
seen noise types [25] and unseen speakers (following evaluation
on the LibriSpeech corpus [38]) so we hypothesized that this ad-
vantage would translate well to unseen listener audiograms and
algorithms.

For both track 1 and track 2, and for all test signals, the
SI is predicted using only the target signal and the listener’s
audiogram. No data, other than those provided in the CPC1
dataset, was used for training.

3.2. Benchmark and figures of merit

The performance of the proposed measure is assessed in terms
of RMSE (used to rank CPC1 submissions) and of Pearson’s
correlation coefficient (LCC) between the measured and pre-
dicted SI. This performance is benchmarked against the use of
existing signal-based metrics computed from xm(n), i.e., the
output of the hearing loss simulation.

Four signal-based measures are used as benchmark in this
paper, namely the modified binaural STOI (MBSTOI) [39],
STOI [7], its non-intrusive extension NISTOI [9], and
SRMRnorm [12]. All four measures are computed from the out-
put of the hearing loss model and after, with the exception of
MBSTOI, processing xm(n) into a single-channel signal using
a blind binaural preprocessing stage (BSIM20) [20]. For all four
signal-based measures, speech intelligibility is computed after
applying a sigmoidal mapping whose parameters are learned
using the CPC1 training set. In the case of MBSTOI, this is
equivalent to using the baseline provided for CPC1.

4. Results
The performance of the considered measures are depicted in
Fig. 1. Unsurprisingly, the intrusive measure (MBSTOI and
STOI) perform best in terms of both RMSE and LCC. The quite
small degradation in performance observed when comparing
STOI to MBSTOI, seems to suggest the the BSIM20 model,
here applied to reduce the binaural signal to a single-channel
signal while preserving binaural information, could be a suit-
able approach in future designs on intelligibility measures. One
should however consider that even the performance of MBSTOI
on this challenging task is far from perfect, with its best perfor-
mance obtained on Track 1 with an RMSE of 28.52 and an LCC
of 0.62.

Though the lower performance of non-intrusive measures
was expected, the considered measures yield very low correla-
tion, with a maximum of 0.25 for both NISTOI and SRMRnorm.
The combination of VQ-CPC features and with both the Large
and Small predictor completely failed. Several hypothesis can
be made to explain this failure. Concerning the poor perfor-
mance of all non-intrusive measures, this is possibly due to their
inadequacy in capturing the particularity of the hearing loss in
each listener. One potential solution is to condition the VQ-
CPC feature extractor directly on the listener’s audiogram as an
auxiliary input to x, potentially improving the quality of the re-
sulting latent representations. A similar approach could also be
taken with the predicting function, again taking the audiogram
as an auxiliary input alongside c.

More importantly in the context of this paper is the failure
of the VQ-CPC based measures denoted as Small and Large.
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Figure 1: Performance of the proposed non-intrusive measure
using VQ-CPC features and either the Small or Large predic-
tor, and considered benchmark signal-based measures. Blue
indicates intrusive measures (MBSTOI and STOI) and grey in-
dicates non-intrusive measures (NISTOI and SRMRnorm). Bold
typeface indicates the measures whose output were submitted to
CPC1.

The most likely explanation for this failure is the small size of
the training dataset. Indeed, previous work using a similar mea-
sure used several hundreds of hours of training data [25]. This
was however done at the cost of using an intrusive measure to
label the signals rather than, as in CPC1, real measurements of
intelligibility. Future works, possibly in future prediction chal-
lenges, might allow us to use both large datasets and real intel-
ligibility labels, though we acknowledge that such an affair is
most likely to be costly to undertake.

A more cost-efficient solution is to train the VQ-CPC on
large amounts of binaural audio which does not have to have
intelligibility scores associated with it. However, the limited
amount of labelled data means that the predicting functions
would still be forced to use a significantly smaller dataset. This
limits the selection of architectures that can be used in the pre-
dicting function. This is because potentially more powerful ar-
chitectures are prone to overfitting in data-limited scenarios,
making their use untenable. Another potential solution is to
use more aggressive data augmentation, expanding the effective
size of the dataset.

5. Conclusion
This paper proposed to apply the combination of a hearing loss
model, a VQ-CPC feature extractor and trained predictor to
predict the intelligibility from binaural signals processed using
hearing aids algorithms. This prediction is done non-intrusively,

using only the target signal and the audiogram of the target lis-
tener as input. The evaluation is conducted on the CPC1 dataset
and this measure was submitted to this challenge. The pro-
posed measure does not outperform the MBSTOI-based base-
line and, perhaps more importantly, fails even when compared
to the other considered non-intrusive benchmark measures. As
the proposed measure is non-intrusive, this was expected. How-
ever, it performs poorly compared to SRMRnorm, despite using
a more complex predicting function. This is disappointing con-
sidering the encouraging results obtained using VQ-CPC fea-
tures in our prior work. This might be due to the relatively
small training dataset compared to the dataset used in our previ-
ous work. Future research, including in future prediction chal-
lenges, would be helpful to investigate this behaviour further.
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