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Abstract
Non-intrusive intelligibility prediction is important for its ap-
plication in realistic scenarios, where a clean reference signal
is difficult to access. The construction of many non-intrusive
predictors require either ground truth intelligibility labels or
clean reference signals for supervised learning. In this work,
we leverage an unsupervised uncertainty estimation method
for predicting speech intelligibility, which does not require in-
telligibility labels or reference signals to train the predictor.
Our experiments demonstrate that the uncertainty from state-of-
the-art end-to-end automatic speech recognition (ASR) models
is highly correlated with speech intelligibility. The proposed
method is evaluated on two databases and the results show that
the unsupervised uncertainty measures of ASR models are more
correlated with speech intelligibility from listening results than
the predictions made by widely used intrusive methods.
Index Terms: Speech intelligibility prediction, non-intrusive
method, unsupervised uncertainty estimation

1. Introduction
Speech intelligibility is usually interpreted as how comprehen-
sible speech is. Accurate intelligibility prediction has always
been of great interest for its importance in developing speech
enhancement related applications, such as hearing aids. In re-
cent years, non-intrusive intelligibility prediction, which does
not require clean signals as references, has drawn increasing at-
tention because of its wider applicability compared to intrusive
methods, especially in realistic scenarios. One of the promis-
ing candidates for non-intrusive intelligibility prediction is ASR
models [1–4], given that they can perform similarly to human
speech recognition in certain situations [5–7]. Intelligibility
can be characterised by the probability of correct word recog-
nition [8]. Meanwhile, the uncertainty of ASR models is as-
sociated with the probability of models making correct predic-
tions [9–13].

Motivated by this, this study investigates how to estimate
the uncertainty of a strong ASR model and correlate it to speech
intelligibility. Specifically, we propose to use an unsupervised
ASR uncertainty estimation method, which does not require in-
telligibility labels or clean references to predict sequence-level
speech intelligibility. Our experiments are conducted on both
a small vocabulary database with simple noisy scenes and a
large vocabulary database with more complex noisy scenes. It is
shown that the uncertainty of strong ASR models is highly cor-
related to speech intelligibility, and the prediction performance
can outperform widely used intrusive intelligibility predictors.
The experimental results also indicate that the uncertainty of
ASR models is better than ASR recognition results, such as
word correct score (WCS), at intelligibility prediction.

The next section presents the background for unsupervised
ASR uncertainty estimation and recent non-intrusive intelligi-

bility prediction methods. The methodology used to formulate
unsupervised ASR uncertainty is explained in Section 3. Sec-
tion 4 describes the experimental data, setups, and results. Sec-
tion 5 concludes this work.

2. Background
Uncertainty estimation is crucial for ASR application as it can
help improve robustness in critical tasks. Most ASR uncertainty
estimation methods construct and optimise an estimator on top
of the original ASR model with supervision [11–13]. Recently,
a word-level ASR uncertainty estimation method is proposed
in [10], and a sequence-level uncertainty estimation method for
auto-regressive structured prediction tasks is proposed in [9].
The major advantages of sequence-level uncertainty estimation
for intelligibility prediction, which is used in this work, are that
it does not require: firstly, human listening results because they
are usually noisy and expensive; secondly, token-level labels
because the alignment could be difficult and intractable, i.e.,
listeners may respond little when the speech is not intelligible.

Conventional non-intrusive intelligibility predictors, such
as SRMR [14] and ModA [15], take advantage of acoustic fea-
tures related to intelligibility. They heavily rely on prior knowl-
edge on scene acoustics, such as room reverberant character-
istics, therefore the application is limited. Another group of
methods can be considered as variants of intrusive predictors,
like the short-time objective intelligibility (STOI) [16], such as
NI-STOI [17], NIC-STOI [18], THMMB-STOI [19]. A clean
feature estimation model is usually constructed and used to pro-
duce an estimated reference for computing STOI-like scores.
Therefore, clean signals are usually required to optimise the es-
timation model. Meanwhile, transcription or clean signals are
sometimes preferred for alignment or voice activity detection.
Recently, a number of data-driven methods are proposed, such
as [4, 20–22]. These methods train a classification and regres-
sion tree or neural networks to predict intelligibility from fea-
tures of noisy signals, therefore requiring a number of expen-
sive human listening results or scores from intrusive predictors
like STOI. Apart from the aforementioned methods, a series of
works including FADE [6], and [3, 23] leverage ASR models
to predict speech reception thresholds (SRT), i.e., the signal-
to-noise ratio (SNR) at which half of words within a group of
noisy utterances are correctly recognised, rather than sequence-
level intelligibility scores. The most recent work [23] in the
series does not require transcripts or reference signals for intel-
ligibility prediction, while it uses identical noises for training
and testing, and the recognition results need to be estimated.

3. Method
In this section we describe how two sequence-level ASR uncer-
tainty measures are formulated: confidence and entropy, with an
ensemble method following the derivation in [9]. The ensem-
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ble of models can be interpreted from a Bayesian perspective,
i.e., regarding model parameters θ as random variables and us-
ing a prior p(θ) to compute the posterior p(θ|D) with a given
datasetD. As Bayesian inference is usually intractable for mod-
els like deep neural networks, it is possible to take advantage of
an approximation q(θ) to p(θ|D) with a family of models with
different parameters [24]. Monte-Carlo Dropout [25] and Deep
Ensembles [26] are two major approaches to generate ensem-
bles, and the latter approach is exploited in this work.

3.1. Uncertainty estimation

Given the ASR training dataset containing variable-length se-
quences of input acoustic features {x1, . . . , xN} = x ∈
X , and the corresponding transcript targets {y1, . . . , yL} =

y ∈ Y , an ensemble of M ASR models {P(y|x;θ(m))} can
be trained to achieve the approximated posterior q(θ). The
sequence-level predictive posterior P(y|x,θ) can be computed
as the expectation of the ensemble:

P(y|x,θ) = Eq(θ)[P(y|x,θ)]

≈ 1

M

M∑
m=1

P
(
y|x,θ(m)

)
,

(1)

where θ(m) ∼ q(θ) ≈ p(θ|D). The sequence-level entropy
H(y|x,θ) can be expressed as:

H(y|x,θ) = EP(y|x,θ)[− ln P(y|x,θ)]

= −
∑
y∈Y

P(y|x,θ) lnP(y|x,θ). (2)

It is usually not possible to compute the posterior P(y|x,θ)
as Y is an infinite set with variable-length transcript sequences.
However, an autoregressive ASR model could factorise the pos-
terior into a product of conditionals:

P(y|x,θ) =
L∏

l=1

P(yl|y<l,x;θ), yl ∈ {ω1, . . . , ωK}, (3)

where ω represents the byte-pair encoding (BPE) token, and K
is the size of BPE vocabulary.

Confidence is usually considered as the maximum predicted
probability, and the sequence-level confidence CS in this work
is regarded as a combination of token-level confidence. In order
to make fair comparison of sequences with variable lengths, a
length normalisation rate is used [27], and CS is computed as:

CS = exp

[
1

L
ln

L∑
l=1

max
1

M

M∑
m=1

P(yl|y<l,x;θ
(m))

]
. (4)

Entropy computation is usually challenging as the expec-
tations of y are practically intractable, i.e., there are KL pos-
sible candidates for a L-length sequence yL, and a forward-
pass inference needs to be conducted for each hypothesis y.
Meanwhile, beam-search in ASR inference stage is able to
provide high-quality hypotheses and can therefore be consid-
ered as an importance-sampling which yields hypotheses from
high-probability space. By using B top hypotheses within a
beam, the approximated sequence-level entropy HS with sim-
ple Monte-Carlo estimation can be computed as:

HS = −
B∑

b=1

πb

L(b)
ln P(y(b)|x,θ),

πb =
exp 1

T
ln P(y(b)|x,θ)∑B

k exp 1
T
ln P(y(k)|x,θ)

,

(5)

where a calibration temperature T can be introduced to adjust
the distribution of hypotheses, and:

ln P(y(b)|x,θ) =
L(b)∑

l(b)=1

ln
1

M

M∑
m=1

P(y
(b)
l |y

(b)
<l ,x;θ

(m)).

(6)

3.2. ASR posterior

The ASR model used in this work is based on the transformer
architecture [28], which has shown impressive results recently.
The model consists of a convolutional neural network-based
front-end, a transformer-based encoder, and a transformer-
based decoder. A mechanism combining the Connectionist
Temporal Classification (CTC) and attention-based sequence to
sequence (seq2seq) is used for the optimisation [29]. When es-
timating the uncertainty, the predictive posterior for each token
is expressed as:

P(yl|y<l,x;θ
(m)) = λPCTC(yl|y<l,x;θ

(m))

+ (1− λ)Pseq2seq(yl|y<l,x;θ
(m)),

(7)

where λ is a weighting coefficient.

4. Experiments and Results
Our experiments are conducted on the Noisy Grid corpus [5]
and the round one database of Clarity Prediction Challenge
(CPC1) [30] which will be introduced in details in the next sub-
sections. For both experiments, ensembles of six ASR models
are employed to estimate uncertainty. As the entropy is sup-
posed to be negatively correlated with intelligibility, negative
entropy −HS is used for evaluation. In addition, we also eval-
uate the WCS from ensembles of ASR models.

ASR models used in this work are all finetuned from the
SpeechBrain [31] released LibriSpeech model1 with only dif-
ferent random seeds. The ASR models take 80-channel log
mel-filter bank coefficients of an utterance with 16 kHz sam-
pling rate as input features. The convolutional front-end con-
sists of three 2D convolutional layers, and the encoder and the
decoder consists of twelve and six multi-head attention trans-
former blocks, respectively. The weighting coefficient α is set
to 0.4 for uncertainty estimation. The calibration temperature
T is kept as 1. The top 10 hypotheses within the beam are used
for entropy estimation.

Three metrics, including root mean square error (RMSE),
normalised cross-correlation coefficient (NCC), and Kendall’s
Tau coefficient (KT), are used to evaluate the correlation be-
tween the intelligibility scores from listening results, which are
represented by the WCS, i.e. the number of words that are cor-
rected recognised divided by the total number of words in the ut-
terance, and the ASR WCS, the estimated uncertainty measures
CS ,−HS . Following the convention of evaluating intelligibility
prediction, we report the correlations achieved by applying a lo-
gistic mapping function f(x) = 1/[1 + exp(ax+ b)], because
RMSE and NCC could be invalid in non-linear cases, and the
monotonicity correlation is already of great interest for analysis
and optimisation. For the proposed method, the two parameters
a and b are optimised in the development set with non-linear

1huggingface.co/speechbrain/asr-transformer-transformerlm-
librispeech



Figure 1: Predicted intelligibility measures on Noisy Grid Cor-
pus test set, including eSTOI, and ASR WCS, confidence CS ,
negative entropy −HS , from the ensemble of ASR models opti-
mised with the NGrid, versus the listening result WCS, in addi-
tion with the logistic mapping functions.

least squares2, and used in the test set to map the estimated un-
certainty to the predicted intelligibility. For the baseline system,
the parameters are optimised on the combined training and de-
velopment sets.

4.1. Noisy Grid corpus

4.1.1. Database

The Noisy Grid corpus is an extension to the original Grid cor-
pus [32] with added speech shaped noise (SSN) at 12 differ-
ent SNR levels from -14 dB to 40 dB. Each Grid utterance con-
sists of six words following the structure of “command-color-
preposition-letter-digit-adverb”, and the words are randomly se-
lected within a limited vocabulary of [4, 4, 4, 25, 10, 4] words.
The listeners are asked to identify “color”, “letter”, and “digit”
in the listening tests, therefore the WCS for each utterance can
only be [0, 1/3, 2/3, 1]. In order to make the distribution of
WCS relatively more continuous, the reported WCS is averaged
over ten utterances at the same SNR level. The database com-
prises utterances spoken by 34 speakers, in which the utterances
of 22 speakers are used as training set for ASR optimisation, 6
speakers as development set, and 6 speakers as test set. We ob-
served that over 90% utterances, whose SNRs are equal to or
higher than 0 dB, have perfect WCS in the listening tests. In or-
der to even the distribution of the database, we report the results
of utterances whose SNRs are lower than 0 dB.

4.1.2. Setup

We exploit STOI and extended-STOI (eSTOI) [33]3 as the base-
line intelligibility predictors. Both STOI and eSTOI are intru-
sive measures taking advantage of the correlation between the
acoustic features of clean reference signals and corresponding

2docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
curve fit.html

3https://github.com/mpariente/pystoi

Table 1: Correlation evaluation between the listening result
WCS and predicted intelligibility measures on Noisy Grid Cor-
pus test set.

WER Measure RMSE ↓ NCC ↑ KT ↑

STOI - - 0.154 0.853 0.670

eSTOI - - 0.100 0.928 0.762

LS 49.09
CS 0.172 0.762 0.572
−HS 0.166 0.788 0.595
WCS 0.206 0.607 0.440

CGrid 32.88
CS 0.224 0.521 0.329
−HS 0.235 0.444 0.302

ASR WCS 0.148 0.825 0.650

DGrid 21.03
CS 0.098 0.925 0.767
−HS 0.099 0.924 0.768

ASR WCS 0.115 0.901 0.754

NGrid 17.04
CS 0.093 0.937 0.790
−HS 0.094 0.936 0.791

ASR WCS 0.144 0.844 0.695

degraded processed signals. Because the Grid corpus has a lim-
ited vocabulary, the inference of the ASR models is strictly con-
strained within the Grid dictionary. As the ASR models oper-
ate at 16 kHz, the Noisy Grid utterances are downsampled from
25 kHz to 16 kHz.

To investigate the impact of prior knowledge of the ASR
models (the data used for ASR optimisation) could have on in-
telligibility prediction, we employ different ensembles of mod-
els including: ASRs finetuned on the training sets of (1) Lib-
riSpeech (LS); (2) clean Grid corpus (CGrid); (3) clean Grid
mixed with DEMAND noise [34] at SNRs from -15 dB to
15 dB (DGrid); (4) the original noisy Grid corpus (NGrid). The
ensemble of ASR models finetuned on LS are optimised for two
epochs, and those finetuned on CGrid, DGrid, NGrid are opti-
mised for 10 epochs.

4.1.3. Results

Table 1 lists the evaluation results on the Noisy Grid test set.
The eSTOI predicted intelligibility scores, ASR WCS, confi-
dence and negative entropy from the ensemble of ASR models
finetuned on NGrid versus the listening result WCS along with
the logistic mapping functions are shown in Figure 1. The result
shows that the uncertainty estimated by the ensemble of ASR
models optimised with NGrid is highly correlated with speech
intelligibility and outperforms STOI, eSTOI. In addition, the
uncertainty is better at intelligibility prediction than ASR WCS.
The confidence is slightly more correlated with intelligibility
than entropy in terms of RMSE and NCC, while the entropy
performs slightly better in terms of KT.

The word error rates (WER) of Noisy Grid test set for each
ensemble of ASR models (which vary by their degree of prior
knowledge of the evaluated ASR models) are also shown in Ta-
ble 1. It shows that a strong prior knowledge of the test data
leads to a high correlation between ASR uncertainty and speech
intelligibility based on the results of CGrid, DGrid, and NGrid.
However, it can be observed that when the ASR models have
no knowledge of the noisy signals, the confidence and negative
entropy of LS finetuned ensemble could outperform the CGrid
finetuned ensemble. It is also worth noting that ASR models op-
timised on DGrid, i.e., different type of noises from the Noisy
Grid test set, could also produce competitive results.



Figure 2: Predicted intelligibility measures on CPC1 closed
evaluation set, including the baseline, ASR WCS, and con-
fidence CS , negative entropy −HS , from the ensemble of
MSBG+CLS+CPC1 ASR models, versus the listening result
WCS, in addition with the logistic mapping functions.

4.2. CPC1

4.2.1. Database

For the purpose of advancing hearing aid intelligibility pre-
diction, the CPC1 database provides a large number of binau-
ral signals and their corresponding responses made by hearing
impaired listeners. Each signal corresponds to a noisy scene,
which is simulated by mixing a target utterance and a segment
of noise in a room, and enhanced by a machine learning hearing-
aid system based on the listener’s hearing loss measure. The
complete database consists of 6 speakers, 10 hearing aid sys-
tems and 27 listeners. Two separate but related tracks are in-
cluded in CPC1: (1) closed-set, in which the evaluation hearing-
aid systems and listeners are the same as those in the training
data; (2) open-set, in which the hearing-aid systems or listeners
in the evaluation set are different from those in the training data.
Readers are referred to [30] for full details. In both tracks, the
training/development scenes are split between 70 % and 30 %,
and the results on the extra evaluation set are reported.

4.2.2. Setup

Since in CPC1 the listeners are hearing impaired and the sig-
nals are binaural, the baseline system employs a combination
of Cambridge MSBG hearing loss simulator [35–38] and MB-
STOI [39]. The MSBG simulator applies simulated degradation
to an input signal according to the hearing loss measures of a
listener, and MBSTOI is a refined version of binaural STOI.

To estimate the uncertainty of a binaural signal from an en-
semble of ASR models, the signal is resampled to 16 kHz after
processing with the MSBG model. Uncertainty of the left and
right channel of each binaural signal is estimated independently,
and a better ear principle is applied for the binaural uncertainty,
i.e., the higher value of CS or −HS is regarded as the binaural
uncertainty. The same better ear rule is also applied to the left
and right ASR WCS.

Table 2: Correlation evaluation between the listening result
WCS and predicted intelligibility measures on CPC1 closed
evaluation set.

WER Measure RMSE ↓ NCC ↑ KT ↑

Closed-set

Baseline - - 0.285 0.621 0.398

without MSBG 25.17
CS 0.241 0.751 0.472
−HS 0.239 0.754 0.477

ASR WCS 0.249 0.730 0.525

with MSBG 30.33
CS 0.234 0.767 0.497
−HS 0.233 0.768 0.499

ASR WCS 0.249 0.731 0.526

Open-set

Baseline - - 0.365 0.529 0.391

with MSBG 30.93
CS 0.248 0.729 0.512
−HS 0.246 0.734 0.512

ASR WCS 0.253 0.717 0.530

The pretrained ASR models are first finetuned on the Lib-
riSpeech (LS) for two epochs. Furthermore, they are optimised
with LS train-clean-100 added with noises from the training
set in the first round Clarity Enhancement Challenge [40] for
10 epochs. Finally, the models are optimised with the CPC1
training set for another 10 epochs. Therefore, the ASR models
possess knowledge of clean, noisy, and processed speech sig-
nals. For the closed-set experiments, we trained two ensembles
of ASR models with and without the MSBG hearing loss model
processed signals.

4.2.3. Results

For the CPC1 closed-set, the uncertainty estimated from the en-
semble of ASR models are more strongly correlated with speech
intelligibility than the baseline, and negative entropy gains a
slight advantage over confidence. In terms of RMSE and NCC,
the uncertainty also outperforms ASR WCS. On the contrary,
ASR WCS performs better with regard to KT as WCS are dis-
crete, i.e., tied pairs are more likely to appear. In addition, the
results show that the MSBG model could provide a slight ad-
vantage for intelligibility prediction.

The results on the open-set are consistent with those on the
closed-set. It is also worth noting that, the baseline has a large
performance drop as the evaluation signals are very different
from the ones in the training set. However, the ASR models
are quite robust to this mismatch as the WERs are similar, and
achieve similar performances.

5. Conclusions
In this paper, we have shown that the sequence-level uncer-
tainty of DNN-based ASR models is strongly correlated with
speech intelligibility. Therefore, the estimated confidence and
entropy from an ensemble of ASR models can be used as ef-
fective non-intrusive intelligibility predictors. In addition, the
uncertainty estimation is unsupervised requiring no explicit ref-
erences, i.e., no listening WCS nor reference clean signals are
needed for training the predictor. The experimental results on
two databases show that the proposed method can outperform
STOI and its variants, and is better than ASR WCS at intelligi-
bility prediction.



6. References
[1] I. Holube and B. Kollmeier, “Speech intelligibility prediction in

hearing-impaired listeners based on a psychoacoustically moti-
vated perception model,” The Journal of the Acoustical Society
of America, vol. 100, no. 3, pp. 1703–1716, 1996.

[2] T. Jürgens and T. Brand, “Microscopic prediction of speech recog-
nition for listeners with normal hearing in noise using an auditory
model,” The Journal of the Acoustical Society of America, vol.
126, no. 5, pp. 2635–2648, 2009.

[3] C. Spille et al., “Predicting speech intelligibility with deep neural
networks,” Computer Speech & Language, vol. 48, pp. 51–66,
2018.

[4] M. Karbasi et al., “Non-intrusive speech intelligibility predic-
tion using automatic speech recognition derived measures,” arXiv
preprint arXiv:2010.08574, 2020.

[5] J. Barker and M. Cooke, “Modelling speaker intelligibility in
noise,” Speech Communication, vol. 49, no. 5, pp. 402–417, 2007.
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