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Abstract

As part of the first Clarity Prediction Challenge (CPC1), this
study predicted the speech intelligibility of hearing-impaired
subjects. A hybrid model was used for the predictions, using
a blind equalization-cancellation (EC) model as binaural front-
end and a non-blind version of the speech transmission index
(STI) using a correlation method as back-end. The model pre-
sented here (bBSIM-STI) is very similar to the basic CPC1 non-
blind model. The data to be predicted were split into two data
sets. The closed data set includes the information of all listen-
ers and enhancement algorithms. The open data set includes
just a subset of the listeners and the enhancement algorithms.
bBSIM-STI (open set: RMSE = 28.09 % and ρ = 0.63, closed
set: RMSE = 27.52 % and ρ = 0.66) produces lower RMSEs and
higher correlations than the baseline model (open set: RMSE =
36.52 % and ρ = 0.53, closed set: RMSE = 28.52 % and ρ =
0.62) for both the open and the closed set.
Index Terms: speech recognition, hearing impairment, binau-
ral hearing, Speech Transmission Index

1. Introduction
Several studies (e.g., [1, 2, 3]) demonstrated that normal-
hearing (NH) listeners can benefit from spatially separated tar-
get speaker and masker sources compared to situations, where
the target is spatially co-located with the masker. Such a benefit
is generally reduced in reverberant situations compared to ane-
choic situations as binaural cues (interaural level differences,
ILDs, and interaural time differences, ITDs) are impaired by
reverberation, which also reduces temporal modulation of the
target signal and reduces the chance to listen into the dips of
fluctuating masker signals.

From previous studies (e.g., [2, 4]) it is known that hearing-
impaired (HI) listeners are less capable of taking advantage
when the target is spatially separated from the masker than NH
listeners, which might be explained by an impaired represen-
tation of binaural cues and a reduced audibility of the target
signal in the better ear. Since the acoustic environments con-
sidered in the first Clarity Enhancement Challenge (CEC1) [5]
typically comprise reverberation and spatially separated target
and masker sources, a modelling approach consisting of a bin-
aural processor, which simulates binaural interaction and better-
ear processing under consideration of hearing-impairment, fol-

lowed by an analysis of the temporal envelope seems to be rea-
sonable choice for this task.

Thus, this contribution (entry ID E019) to the CPC1 [6] is
based on the latest version of the blind Binaural Speech Intelli-
gibility Model (BSIM20) [7] and the correlation-based version
of the Speech Transmission Index (STI) [8]. Former versions
of BSIM [9, 10] did not work blindly (i.e., they required sep-
arated speech and noise signals) and applied the Speech Intel-
ligibility Index (SII) [11] as back-end. In this contribution we
use the blind front-end of BSIM20 which is called bBSIM in
the following. bBSIM produces equal results as the non-blind
version but requires no auxiliary information about the target
speech and the masking noise, so that it can be combined with
arbitrary back-ends predicting speech recognition scores (see,
e.g., [12, 13]).

The use of bBSIM helps to understand how relevant the bin-
aural information in the CPC1 is for speech understanding. In
this contribution, we use the correlation-based STI as back-end,
as it is takes reverberation effects into account and produced the
best predictions during the training phase of CPC1 compared
to other back-ends we tried. This back-end is not blind as it
requires the clean target speech separately and thus the combi-
nation of bBSIM and STI is a hybrid model. Note that in this
contribution no machine learning is applied but two classic ap-
proaches from psychoacoustics are combined that are very easy
to compute. In this respect this contribution is very close to
the baseline model of CPC1 which used a very similar binaural
front-end [14] combined with a back-end that also analyses the
modulations of the signal [15]. Hence, this contribution can be
seen as an alternative baseline model that shows how far we (the
authors) were able to get without machine learning and training
to the test data.

2. Method
2.1. Data basis

The provided data basis of the CPC1 was used, which contains
audio signals [16], characteristics of the HI listeners, and the
speech intelligibility scores from listening test (correct response
rates given for single sentences) [5]. The listeners’ task in the
listening test was to repeat the words that were understood in
the presented test signal, which varied in the acoustic scene and
also in speech enhancement algorithm of the CEC1 [5]. The



different acoustic scenes were generated by convolving the au-
dio signals with binaural room impulse responses (BRIRs). The
acoustic scenes always included one target speaker from a set
of 40 speakers, uttering a 7- to 10-word sentence. The tar-
get speech was masked by continuous noise as interferer. All
stimuli were played in a small room with low to moderate re-
verberation. Each acoustic scene consisted of a unique target
utterance and a unique interferer segment, which were mixed
together. These signals and the audiograms of the HI listeners
were processed by the hearing aid algorithms of the CEC1 [5]
and subsequently used for the listening tests. The data basis
consisted of two parts, an open set and a closed set, each con-
sisting of training and evaluation data. The closed set contained
information about all 27 listeners and 10 speech enhancement
algorithms, for the test and evaluation data, while the training
data of the open data set contained a subset of 22 listeners and 9
enhancement algorithms. Not all provided information from the
database was used, but only the information mentioned here.

2.2. Baseline model

The baseline model used in this challenge is a composite of a
hearing loss model [14] and a speech intelligibility model [15].
Decreased audibility, reduced dynamic range, and the loss of
temporal and frequency resolution is simulated by the hearing
loss model. The model uses the output of the hearing aid pro-
cessor and the audiograms of the listener as input. The speech
intelligibility model is a binaural, modified version of the short
time objective intelligibility model (STOI) [17] and calculates
the correlation of the speech envelopes of the clean and the de-
graded speech. A minimum root-mean-square error (RMSE)
sigmoid fitting is used to map the MBSTOI values to speech
recognition in percent. The fitting parameters were estimated
only from the training data of the respective data set.

2.3. bBSIM

The bBSIM proposed in [7] is used as binaural front-end. It re-
ceives the mixed target speech and interferer signals at the left
and the right ear as input. The stimuli provided in the challenge
were preprocessed by removing the first 2 seconds and the last 1
second that were known to contain only noise. We additionally
applied a simple rms-based voice activity detection to remove
remaining silent frames.
The first stage of bBSIM simulates the frequency selectiv-
ity of the human auditory system by splitting the input sig-
nals (left and right ear signals) into 30 Equivalent Rectangular
Bandwidth-(ERB-)spaced frequency bands [18] using a gam-
matone filterbank [19] with center frequencies from 150 Hz to
8000 Hz. Based on the individual pure tone audiograms, two
internal threshold-simulating noises are added to the left and
right input signals to simulate the hearing loss. The left and
right threshold simulating noises are generated as uncorrelated
signals, so that the equalization-cancellation (EC, see below)
stage of bBSIM cannot cancel them out. For frequencies up
to 1500 Hz, binaural processing is realized as a blind EC [7]
mechanism, where the differences in ITDs and ILDs between
target and interfering signal can be used to improve the signal-
to-noise ratio. For frequencies above 1500 Hz, the better ear is
selected blindly. In the equalization step the two ear channels of
each gammatone filter channel are equalized in level and phase.
Then, the cancellation step is applied, which uses two different
strategies: 1) a minimization of the output power and 2) a max-
imization of the output power. While the first strategy can be
assumed to be the better strategy at negative SNRs, because it

attenuates the interfering signal, the second strategy can be as-
sumed to be better at positive SNRs, because the power of the
target signal is increased. To choose the best of both strategies
in each frequency channel, the speech-to-reverberation modu-
lation energy ratio (SRMR) [20] is used. SRMR describes the
ratio between speech-like and non speech-like amplitude mod-
ulations by calculating a ratio between the energy in modula-
tion frequency channels below 16 Hz and above 16 Hz. The
SRMR is calculated for both strategies and both ear channels
and, subsequently, the EC channel and the ear channel with the
higher SRMR are combined to produce a single channel signal
with enhanced SNR. Due to its simple calculation SRMR can
be applied independently to each ERB channel. In theory, an
EC mechanism allows for a complete cancellation of interfer-
ing sounds, which would produce unrealistically high speech
intelligibility at very low SNRs. To avoid this, the imperfec-
tions of human binaural processing have to be accounted for.
In the current model version, this is achieved by introducing
uncertainties of binaural processing when adjusting the delay
and gain factors in the EC stage. These were chosen to fluc-
tuate around the optimal factor, which can be described as a
jitter. Since this jitter is directly imposed on the signal, Monte
Carlo simulations (MCSs) must be performed, which is quite
time consuming. In this study, we used a constant mistuning
of the equalization parameters (”fixed jitter”) determined by the
jitter’s standard deviation [7] and can thus dispense with the
time-consuming MCSs.

2.4. Speech Transmission Index

The back-end of the model employed in this study is a specific
version of the STI [21], which receives bBSIM’s output signals
of the clean target speech and degraded speech as input. The
calculation of the separate target and interfering signals is pos-
sible as bBSIM’s processing is linear with respect to the signals,
so that speech and noise can be processed separately using the
EC parameters determined by the blind model (see [7] for de-
tails). The STI analyzes the modulation transfer function by
comparing the envelopes of the input signals to calculate the
modulation transmission index for each frequency band. Here,
the normalized covariance method [8] is applied: The covari-
ance between the envelopes of the target speech and the de-
graded speech is calculated and then normalized with the indi-
vidual variances of the target speech and the degraded speech.
The weighted average of the transfer index of all frequency
bands gives the STI and is very similar to the later proposed
short-time objective intelligibility (STOI) measure [17].

2.5. Mapping from STI to speech recognition

In this challenge speech recognition in percent correct has to
be predicted. The employed STI back-end produces index val-
ues ranging from 0 to 1 and, therefore, the back-end values are
mapped to speech recognition using

f(x) =
1

1 + exp(4 · s50 · (L50 − x))
, (1)

where s50 denotes the slope at the midpoint of the intelli-
gibility function and L50 denoting the level of this midpoint,
which is equal to the speech recognition threshold (SRT) at
which 50 % of the words are correctly understood. For both
data sets, the psychometric functions are fitted only to the train-
ing data. For the open data set, L50 and s50 have been chosen
to fit best to all points of the training data, and are subsequently
used to map the STI value of the open data set. For the closed



data set the mapping is slightly different as it is done for each
listener individually. This means that for each of the 27 listeners
the optimal mapping parameters are used and the corresponding
listener ID is used to map the STI index values of the closed data
set.

3. Results
Figure 1 shows scatter plots of measured vs. predicted intelligi-
bility scores for each tested sentence for the open test set (left
panel) and the closed test set (right panel). A wide scatter can be
observed indicating that the prediction accuracy is limited. One
reason for this wide scatter is certainly that the predictions were
done sentence by sentence which implies a large measurement
uncertainty as discussed below.

Table 1 shows the calculated RMSEs with standard errors
(SE) and the correlation (ρ) between the predicted and the mea-
sured intelligibility scores for the bBSIM-STI and the baseline
model for the open and the closed data set. bBSIM-STI achieves
a lower RMSE than the baseline model (MBSTOI) in both the
open set and the closed set. This difference is particularly pro-
nounced for the open data set (about 7%), and is smaller (about
1%) for the closed data set. In terms of correlation, bBIM-STI
achieves a slightly higher correlation than the baseline model in
the open and the closed set. In contrast to the baseline model,
there is not much difference between the RMSEs of the two data
sets, which also applies to the correlation.

Table 1: Root mean squared error (RMSE) of the predictions
with standard errors (SE) and correlations for the closed and
open data set using the bBSIM-STI and the baseline model MB-
STOI.

Model data RMSE SE ρ

bBSIM-STI open set 28.09 % 1.12 % 0.63
closed set 27.52 % 0.56 % 0.66

MBSTOI open set 36.52 % 1.35 % 0.53
closed set 28.52 % 0.58 % 0.62

Figure 1: Scatter plots visualizing the relation between mea-
sured and predicted intelligibility for the open set (left panel)
and closed set (right panel) for the bBSIM-STI.

Figure 2 shows histograms of the prediction errors (differ-
ence between the predicted and measured recognition scores
per sentence) in per cent for bBSIM-STI (green) and MBSTOI
(blue). The left panel shows the results for the open set and the
right panel shows the results for the closed set. All histograms

Figure 2: Histogram visualizing the prediction error (difference
between predicted and measured intelligibility) for bBSIM-STI
(green) and MBSTOI (blue) for the open set (left panel) and
closed set (right panel).

have their main maximum close to 0 %, with a prominent peak
close to 0 % that clearly deviates from a Gaussian distribution.
This peak can be explained by the limitation of the recogni-
tion scores to values between 0 and 100 %: when the measured
score is 0 or 100 % the prediction model has the chance to hit
this value exactly, because there is no remaining variance in the
measured data (see Figure 1). For the open set a prominent side
maximum in the histogram of MBSTOI in the range from -95
to -75 % can be seen representing a systematic bias in the pre-
dictions. All of these outliers, except for three, occurred for the
same speech enhancement algorithm (E018). Obviously this
speech enhancement algorithm [22] produced signals that irri-
tated MBSTOI more than the bBSIM-STI model. The averaged
RMSEs over all listeners and scenes for the different speech en-
hancement algorithms for the bBSIM-STI model ranges from
21.0 % to 34.5 %, where the combination with the E018 algo-
rithm yielded in a high RMSE (34.4 %) compared to the other
algorithms.

4. Discussion
When experimenting with the provided stimuli and ground truth
data of CPC1, we observed that the model’s binaural processing
did not generate relevant spatial or binaural unmasking. This
indicates that the signals used in CPC1 do not provide usable
binaural information. It is possible that the realistic scenes in-
cluding at least moderate amounts of reverberation had limited
potential for eliciting effects of spatial unmasking. This could
be tested by applying binaural prediction models to the unpro-
cessed signals. A further reason for the missing binaural benefit
might be that the applied signal enhancement algorithms de-
stroyed most of the binaural information. Whatever the reason,
the binaural front-end employed in the current model did not
deliver substantial advantages for CPC1. However, since it did
predict binaural unmasking well in earlier studies, we expect it
may provide useful information in future versions of the pre-
diction challenges if conditions and/or algorithms with stronger
binaural cues are included.

The present CPC1 also provides some insights into incor-
porating hearing loss simulation into prediction models. In
the current modeling approach, hearing-impairment is simu-
lated by (stimulus-independent) additive noise according to the
listener’s audiogram of the left and right ears within the bB-
SIM. Such additive noise has consequences on the audibility



of the target signal, but also on the equalization-cancellation
mechanism mimicking binaural interaction. Surprisingly, con-
sequences of hearing-impairment simulations had only minor
influence on the prediction performance and for that reason we
did not use the pure tone audiogram at all in our second sub-
mission (E022). This finding might mirror the fact that the
listeners adjusted the overall level themselves and that, conse-
quently, audibility did not play an important role in these mea-
surements, and/or that supra-threshold hearing deficits are not
well described by the pure tone audiogram. Recently, [23] suc-
cessfully predicted SRTs for speech in stationary and fluctuat-
ing noise maskers for unaided HI listeners, by simulating con-
sequences of an impaired audibility and suprathreshold hear-
ing deficits, whereas the latter one was simulated by stimulus-
dependent additive noise. Conversely, for SRT predictions of
a noisy speech signal processed by binaural noise-reduction al-
gorithms, [24] applied the same modeling framework as used in
[23], but without taking suprathreshold hearing deficits into ac-
count. Although, they achieved a reasonable prediction perfor-
mance, their results imply that including aspects of suprathresh-
old hearing deficits would be desirable and probably improve
the accuracy of predictions. In the context of binaural hearing,
[25] successfully simulated consequences of hearing deficits for
listeners having no more than a slight hearing loss by including
aspects of audibility and suprathreshold hearing deficits real-
ized by stimulus-independent and stimulus-dependent additive
noise. [25] hypothesized that at higher overall levels, as they
typically occur in conversation scenarios, suprathreshold hear-
ing deficits are probably dominant. Those findings indicate that
extending our suggested modeling approach with a processing
stage that incorporates consequences of suprathreshold hearing
deficits may potentially improve the prediction performance for
HI listeners.

Because the data of this challenge provided no information
about suprathreshold hearing loss, we tried to take an individ-
ual component into account, which describes each respective
listener. This was achieved by fitting the STI–to–intelligibility
mapping individually for each listener. Note that this indi-
vidual mapping not necessarily describes the consequence of
suprathreshold hearing deficits, as there are also other reasons
for individual differences, like cognitive processing. This indi-
vidual mapping was done for the closed data set only and im-
proved the prediction accuracy of our model. For the open data
set we did not perform this individual mapping, as this was not
possible for the unknown listeners. Instead, for the open data
set, we used a general mapping for all listeners. Surprisingly,
our model performed nearly as accurately for the open data set
as for the closed data set. This indicates that the individual map-
ping was not that relevant for the listeners of the open data set
of CPC1.

For the interpretation of the prediction accuracy it has to be
taken into account that the human recognition data is binomially
distributed and that, consequently, the standard error of each
measured recognition score can roughly be estimated by

σp ≈

√
p(1− p)

j
, (2)

with p denoting the recognition score of a sentence (with val-
ues from 0 to 1) and j denoting the statistically independently
recognized parts per sentence. The sentences of this challenge
had 7 to 10 words. Note that due to sentence context the num-
ber of statistically independently recognized parts per sentence
is smaller than the actual number of words. According to [26]

the number of statistical independently perceived parts of a sen-
tence can be estimated as j = log(pw)/ log(pp), with pp denot-
ing the average intelligibility (proportion of correctly perceived
words) and pw denoting the average proportion of sentences,
for which all words have been repeated correctly. The average
j in the open set data of CLC1 is 2.31, which is a typical value
for short meaningful sentences. This gives an average standard
error of the p estimate of approximately 33% for p = 50% and
of 20% for p = 90% according to Equation 2. In other words,
even much better models than ours can hardly achieve RMSE
values close to 20 % or below. In order to compare the pre-
diction accuracy of the different models that participated in this
challenge, it might be helpful to analyze the average prediction
accuracy across all sentences that have been presented to a lis-
tener using a given speech enhancement algorithm.

5. Conclusion
We contributed a hybrid model consisting of the blind Bin-
aural Speech Intelligibility Model (bBSIM) and the Speech
Transmission Index (STI) in a correlation-based version. This
bBSIM-STI model is very similar to the baseline model MB-
STOI and produces a slightly lower RMSE and a slightly higher
correlation than the baseline model for the open set and the
closed set. The main difference between bBSIM-STI and MB-
STOI in the open set can be attributed to a systematic prediction
error of MBSTOI for a single speech enhancement algorithm.
Further conclusions are:

• The improved prediction accuracy is certainly not caused
by the binaural front-end as bBSIM produces virtually
the same predictions as the binaural front-end of the
baseline model as both front-ends are based on [10].

• The improved prediction accuracy is probably due to
small differences in the back-ends. In our back-end an
SNR is derived from the correlation values, which is then
limited to -15 to 15 dB which reduces the frequency of
outliers in the predictions. Apart from this limitation and
somewhat longer time frames for the short-term analysis,
our back-end is virtually identical to the back-end of the
baseline model.

• As the binaural front-end blindly predicts spatial and
binaural release from masking (based on the mixed
speech and noise signal and without knowledge of the
clean speech) it can be combined with arbitrary predic-
tion back-ends and we would be happy if it would be
used by other groups in future rounds of the CPC.

• For the signals of CPC1 the bBSIM did not produce a rel-
evant spatial release from masking which indicates that
there were no usable binaural cues in the output of the
speech enhancement algorithms tested in this challenge.
It is unclear if this is a consequence of the listening con-
ditions or of the tested algorithms.
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