



# THE 3RD CLARITY PREDICTION CHALLENGE: A MACHINE LEARNING CHALLENGE FOR HEARING AID INTELLIGIBILITY PREDICTION

Jon Barker<sup>1</sup>, Michael A. Akeroyd<sup>2</sup>, Trevor J. Cox<sup>3</sup>, John F. Culling<sup>4</sup>, Jennifer Firth<sup>2</sup>, Simone Graetzer<sup>3</sup>, Graham Naylor<sup>2</sup>

<sup>1</sup> Department of Computer Science, University of Sheffield, UK

<sup>2</sup> School of Medicine, University of Nottingham, UK

<sup>3</sup> Acoustics Research Centre, University of Salford, UK

<sup>4</sup> School of Psychology, Cardiff University, UK



## **Motivation**

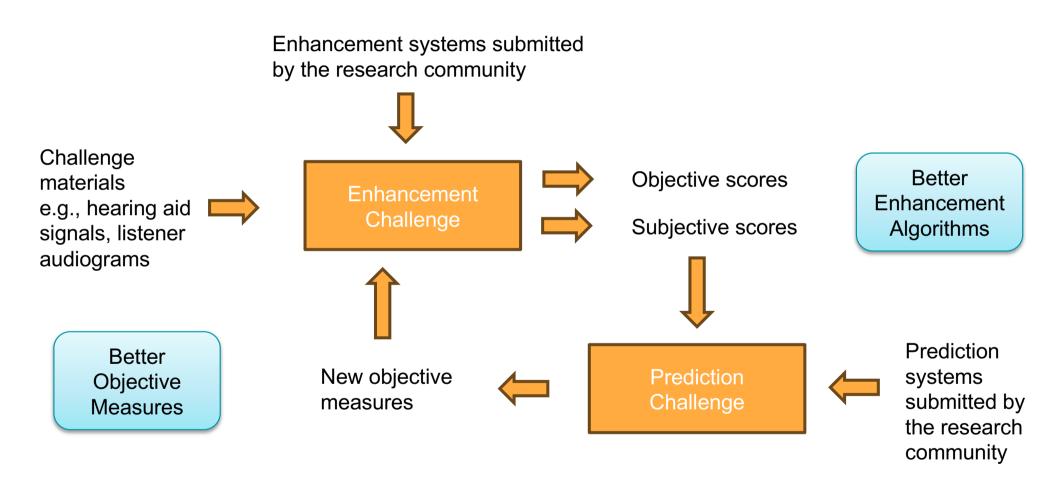


- Understanding speech in noise is a major challenge for hearing-aid users.
- New speech processing algorithms are needed.
- Great potential in recent low-latency DNN-based single- and multi-channel speech processing techniques...
- ...but application of machine learning approaches is hindered by the lack of sufficiently reliable **objective intelligibility measures**.
- 6-year funding from UK government to run a series of open machine learning challenges for intelligibility enhancement and intelligibility prediction - the Clarity Project.














# Challenge methodology









#### Hearing aid speech enhancement challenges:

- 1st Enhancement Challenge, CEC1, 2021
- 2nd Enhancement Challenge, CEC2, 2022
- ICASSP SP Enhancement Challenge 2022-3
  - Speech intelligibility and quality
- 3rd Enhancement Challenge, CEC3, 2024-5

#### Speech intelligibility prediction challenges

- 1st Prediction Challenge, CPC1, 2021-2
- 2nd Prediction Challenge, CPC2, 2023
- 3rd Prediction Challenge, CPC3, 2025

**Results today** 



## The Clarity Prediction Challenge



#### Participants are given:

- A hearing aid output signal that has arisen from processing speech in noise
- The hearing-impairment severity of the listener who is using the hearing aid

#### They must predict:

- The percentage of words that the listener will correctly recognise.

Systems are evaluated by computing the RMS prediction error over a large number of signal/listener pairs across a variety of hearing aid algorithms.





# 3rd Clarity Prediction Challenge

The Task and Materials



## The Clarity Challenge Plan



#### Round 1 (2021)

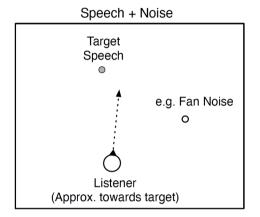
- Simple stationary scenes.
- Domestic living rooms with speech target and a static domestic noise source.

#### Round 2 (2022-23)

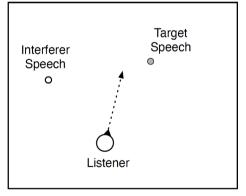
- Scenes with multiple noise sources
- Listener head movements

#### Round 3 (2024-25)

- Fully dynamic scenes.
- Real background; Real hearing aid signals




## Round 1




Target speech in presence of a single interferer.

- Target source is within ±30° inclusive in front of listener at >1 m distance and at same height.
  - Human speech directivity and oriented towards the listener.
- Interferer anywhere, except within 1 m of a wall and omnidirectional.
  - Domestic noise source kettle, washing machine etc
  - Continuous speech stream



Speech + Speech





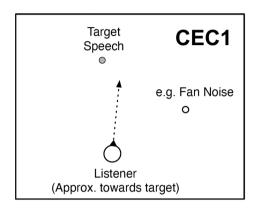
# Simulated hearing aid inputs

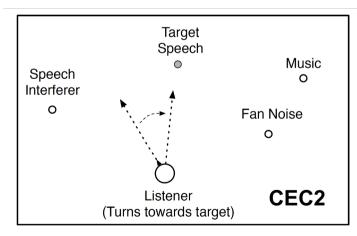


- We use the OlHeaD-HRTF Database (Denk et al., 2018) to simulate input signals for a 3-mic behind-the-ear (BTE) hearing aid.
- i.e., the hearing aid algorithms are provided with six channels as input.

F. Denk, S.M.A. Ernst, S.D. Ewert and B. Kollmeier, (2018): Adapting hearing devices to the individual ear acoustics: Database and target response correction functions for various device styles. Trends in Hearing, vol 22, p. 1-19. DOI:10.1177/2331216518779313







## Round 2



#### Key differences in round 2

- Scenes have two or three interferers.
- Interferers are any combination of speech, noise and music
- The listener turns their head towards the target speaker
- Variability in target speaker onset time
- Target speaker is identified by familiarity (4 clean target speaker utterances for learning target id)
- Better Ear SNR ranges from -12 dB to 6 dB,
  (cf -6 dB to 6 dB for CEC1)







## Round 3



#### Task 1 - real impulse responses

As CEC2 but using measured 6th order ambisonic room impulse responses for development and evaluation data.

#### Task 2 - real hearing aid mics

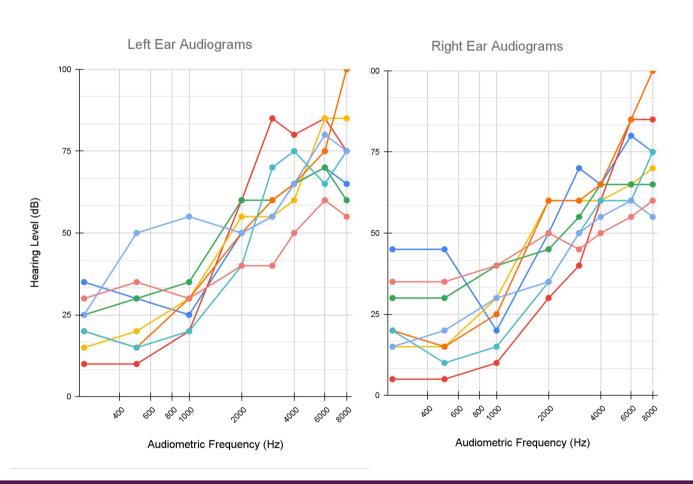
As CEC2 but with scenes played in a real room over loudspeakers and recorded via hearing aid shells.

#### Task 3 - real noise backgrounds

As CEC2 but using real ambisonic background recordings in place of point source interferers and targets real impulse responses for adding the targets. "Out and about"












## **Listener Characteristics**





Round 1 - 28 listeners.

Round 2 - 17 listeners.

Round 3 - 17 listeners.

Mean left ear = 43 dB

Mean right ear = 40 dB

Mean better ear = 39 dB

Mean worse ear = 45 dB

Mean better-worse difference = 6 dB





### **CEC1 Enhancement Systems**

| System | Beamforming   | Noise Removal        | Hearing Loss Compensation       |
|--------|---------------|----------------------|---------------------------------|
| E002   |               | MC Conv-TasNet       | Linear, fitting formula         |
| E003   | RLS adaptive  | Conv-TasNet          | Linear, fitting formula         |
| E004   |               | 2D CNN + LSTM, WPE   | Baseline system                 |
| E005   |               | Binaural Conv-Tasnet | Baseline system                 |
| E007   | MVDR          | Conv-TasNet          | Linear, NN-optimised            |
| E009   |               | MC Conv-TasNet       | Linear, NN-optimised            |
| E010   |               | U-Net CNN            | Linear, fitting formula         |
| E013   | MVDR          |                      | Linear, fitting formula but AGC |
| E016   | Weighted LCMP |                      | Linear, fitting formula         |
| E018   |               | 2D CNN + LSTM, WPE   | Dynamic EQ                      |
| E019   | Weighted LCMP |                      | MBDRC                           |
| E021   | Weighted LCMP | DNN (Deep MFMBVDR)   | MBDRC                           |





### **CEC2 Enhancement Systems**

| Team | System   | Enhancement         | Amplification     | Spkr. Extr.  | Data+        | HR           |
|------|----------|---------------------|-------------------|--------------|--------------|--------------|
| T01  | E009     | cf iNeuBe           | NALR+DRC+trained  | ✓            | -            | -            |
| T02  | E031     | DRC-NET             | NALR              | -            | -            | -            |
| T03  | E008     | SDD-Net + S-DCCRN   | trained           | -            | $\checkmark$ | -            |
| T03  | E008     | ibid.               | trained           | -            | $\checkmark$ | $\checkmark$ |
| T03  | E008     | ibid.               | trained           | -            | -            | $\checkmark$ |
| T03  | E008     | ibid.               | trained           | -            | -            | -            |
| T04  | E037     | EaBNet + mod. MTFAA | POGO II + trained | -            | -            | -            |
| T04  | E022     | ibid.               | POGO II           | -            | -            | _            |
| T05  | E024     | SuDoRM-RF           | PCS               |              | -            | $\checkmark$ |
| T05  | E024     | ibid.               | PCS               | -            | -            | -            |
| T06  | E036     | TCN-conformer       | NALR              | $\checkmark$ | -            | -            |
| T06  | E038     | TCN                 | NALR              | $\checkmark$ | -            | -            |
| T07  | E032     | Extr-DenseUNet      | trained           | $\checkmark$ | -            | -            |
| -    | Baseline | -                   | NALR              | -            | -            | -            |
| -    | None     | -                   | -                 | -            | -            | -            |

Spkr. Extr. = Used speaker extraction;

Data+ = Augmented training data; HR = used head-rotation signal



## Hearing Aid output samples



Good Fair Poor \$08502 / L0106

"And it is the most incredible thing"

Good Fair Poor

"Roll over and repeat on the other side"

Clarity-2025, 22nd August 2025, Delft, The Netherlands

S08501 / L0104

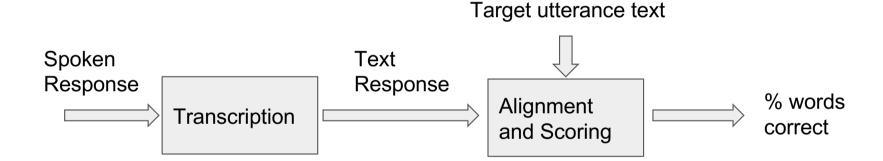



## Listen@Home





Lenovo 10e chromebook tablet and Sennheiser PC-8 headphone+mic headset. Posted to every participant's home. Participants listen to processed speech-in-noise and then respeak the sentence that they've heard.






## Intelligibility Scoring



- The target signals are short sentences, 7-10 words long spoken by British English speakers (Graetzer, et al., 2022)
- Per sentence intelligibility is measured as the percentage of words heard correctly.



e.g., Target: She did not return to land again.

Response: He did not return to the land.

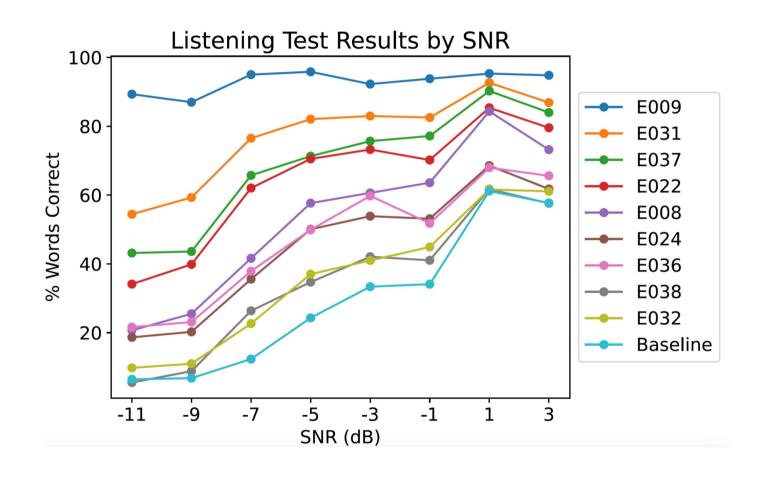
Would score 5 out of 7 correct. (71%)





### CEC2 Listening test scores

| Team | System   | Enhancement         | Amplification     | Spkr. Extr.  | Data+        | HR           | HASPI | Listener |
|------|----------|---------------------|-------------------|--------------|--------------|--------------|-------|----------|
| T01  | E009     | cf iNeuBe           | NALR+DRC+trained  | ✓            | -            | -            | 0.966 | 93.2     |
| T02  | E031     | DRC-NET             | NALR              | -            | -            | -            | 0.801 | 76.5     |
| T03  | E008     | SDD-Net + S-DCCRN   | trained           | -            | $\checkmark$ | -            | 0.800 | -        |
| T03  | E008     | ibid.               | trained           | -            | $\checkmark$ | $\checkmark$ | 0.794 | -        |
| T03  | E008     | ibid.               | trained           | -            | -            | $\checkmark$ | 0.784 | 52.6     |
| T03  | E008     | ibid.               | trained           | -            | -            | -            | 0.777 | -        |
| T04  | E037     | EaBNet + mod. MTFAA | POGO II + trained | -            | -            | -            | 0.775 | 68.4     |
| T04  | E022     | ibid.               | POGO II           | -            | -            | -            | 0.721 | 65.5     |
| T05  | E024     | SuDoRM-RF           | PCS               | -            | -            | $\checkmark$ | 0.630 | 44.8     |
| T05  | E024     | ibid.               | PCS               | -            | -            | -            | 0.617 | -        |
| T06  | E036     | TCN-conformer       | NALR              | $\checkmark$ | -            | -            | 0.599 | 45.6     |
| T06  | E038     | TCN                 | NALR              | $\checkmark$ | -            | -            | 0.554 | 34.1     |
| T07  | E032     | Extr-DenseUNet      | trained           | $\checkmark$ | -            | -            | 0.549 | 35.3     |
| -    | Baseline | -                   | NALR              | -            | -            | -            | 0.258 | 27.0     |
| -    | None     | -                   | -                 | -            | -            | -            | 0.172 | -        |


Spkr. Extr. = Used speaker extraction;

Data+ = Augmented training data; HR = used head-rotation signal

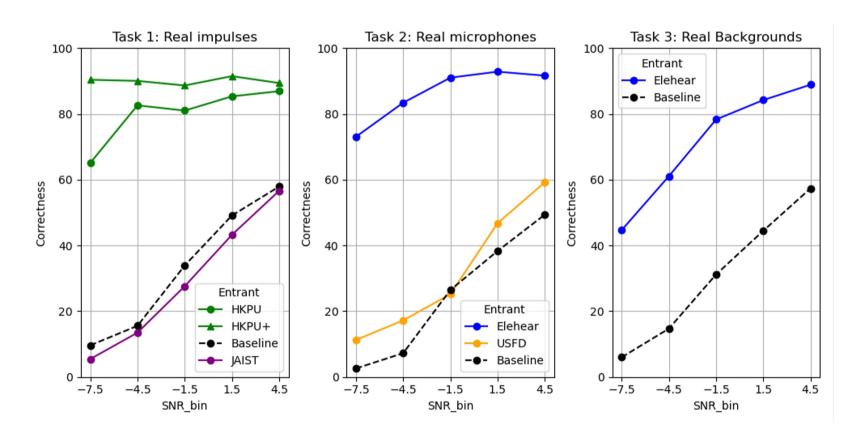


## Performance vs SNR



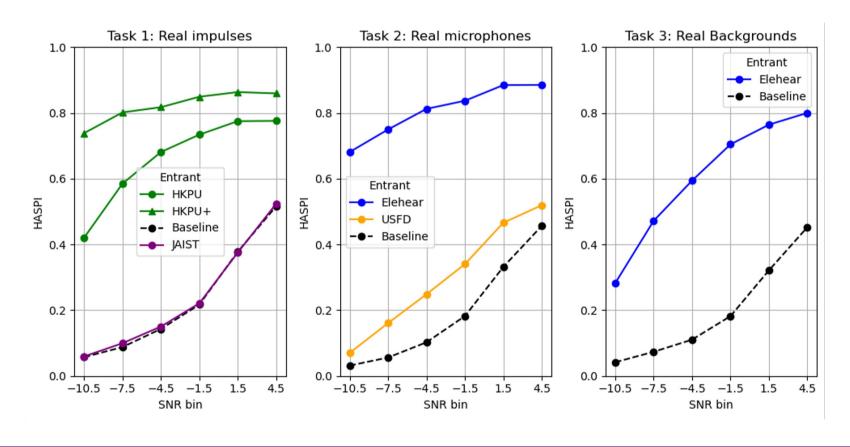







### **CEC3 Enhancement Systems**

| System | Team | Task   | Listener | HASPI |
|--------|------|--------|----------|-------|
| E001   | T001 | Task 1 | 39.3     | 0.241 |
| E002   | T002 | Task 1 | 35.7     | 0.246 |
| E003   | T003 | Task 1 | 82.5     | 0.665 |
| E004   | T003 | Task 1 | 90.1     | 0.823 |
| E005   | T001 | Task 2 | 30.0     | 0.193 |
| E006   | T004 | Task 2 | 36.8     | 0.298 |
| E007   | T005 | Task 2 | 88.7     | 0.806 |
| E008   | T001 | Task 3 | 36.3     | 0.198 |
| E009   | T005 | Task 3 | 76.7     | 0.806 |


















# Clarity Prediction Challenge

Challenge Datasets and Rules





#### **Training Data**

- All the signal-listener pairs from CEC1 and CEC2
- 20,256 single-response pairs in total
- 20 different hearing-aid systems
- 34 listeners
- Ground truth listener scores made available for training.

#### **Dev Data**

- A subset of the CEC3 listening data
- 8 listeners
- 4 systems
- 926 single-response pairs in total
- Ground truth scores hidden, but remote evaluation via submission to 'leaderboard'

#### **Eval Data**

- Remainder of CEC3 data
- 7674 single-response pairs in total
- 16 listeners (dev listeners + 8 more)
- 9 systems (dev systems + 5 more)
- Ground truth hidden and only one submission allowed



## The Clarity Prediction Challenge



#### Participants are given:

- A hearing aid output signal that has arisen from processing speech in noise
- The hearing-impairment severity of the listener who is using the hearing aid
  - i.e. only know whether the impairment is mild, moderate or moderate-severe

#### They must predict:

- The percentage of words that the listener will correctly recognise.

Systems are evaluated by computing the RMS prediction error over a large number of signal/listener pairs across a variety of hearing aid algorithms.





# Clarity Prediction Challenge

**Entries and Results** 



### The Entrants



- We had 21 system submissions arising from 14 separate teams.
- Teams submitted technical papers which were reviewed to check compliance with the rules.
- Systems were classified as either Intrusive or Non-intrusive (i.e. whether they used the undistorted reference speech signal or not)
- Systems were scored by
  - o computing the RMS error between the true and estimated sentence intelligibility
  - o computing the **correlation** between the true and estimated sentence intelligibility.
  - RMS error is the main metric used for system ranking.



# CPC2 Results



| Paired t-test showed E011      | Team  | System  | Intr. | Non-Intr. | RMSE ↓                           | Corr ↑ |
|--------------------------------|-------|---------|-------|-----------|----------------------------------|--------|
| significantly better than E002 | T01   | E011    |       | X         | $\textbf{25.1} \pm \textbf{0.8}$ | 0.78   |
|                                | T02   | E002    |       | X         | $25.3 \pm 0.8$                   | 0.77   |
|                                | T03   | E009    | X     |           | $25.4 \pm 0.8$                   | 0.78   |
|                                | T04   | E022    | X     |           | $25.7 \pm 0.9$                   | 0.77   |
|                                | T05   | E023    |       | X         | $26.4 \pm 0.9$                   | 0.76   |
|                                | T05   | E016    |       | X         | $26.8 \pm 0.9$                   | 0.75   |
| Better-ear HASPI v2,           | T04   | E025    |       | X         | $27.9 \pm 0.9$                   | 0.72   |
| Kates + Arehart, 2021 →        | Base. | beHASPI | X     |           | $28.7 \pm 1.0$                   | 0.70   |
|                                | T06   | E003    |       | X         | $31.1 \pm 1.0$                   | 0.64   |
|                                | T06   | E024    |       | X         | $31.7 \pm 1.0$                   | 0.62   |
|                                | T07   | E015    |       | X         | $35.0 \pm 1.1$                   | 0.60   |
|                                | T08   | E019    |       | X         | -±-                              | _      |
| Always output the              | T09   | E020    |       | X         | $39.8 \pm 1.3$                   | 0.33   |
| training set average           | Base. | Prior   |       | X         | $40.0 \pm 1.3$                   | _      |

Clarity-2025, 22nd August 2025, Delft, The Netherlands

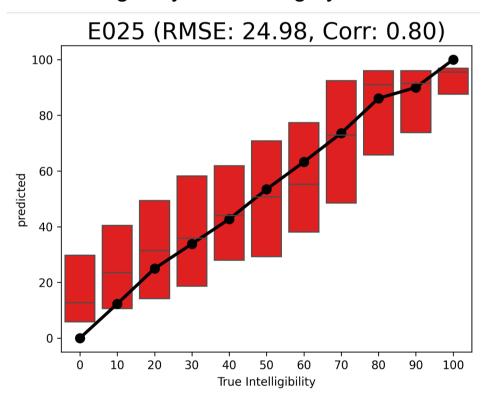


## **CPC3** Results



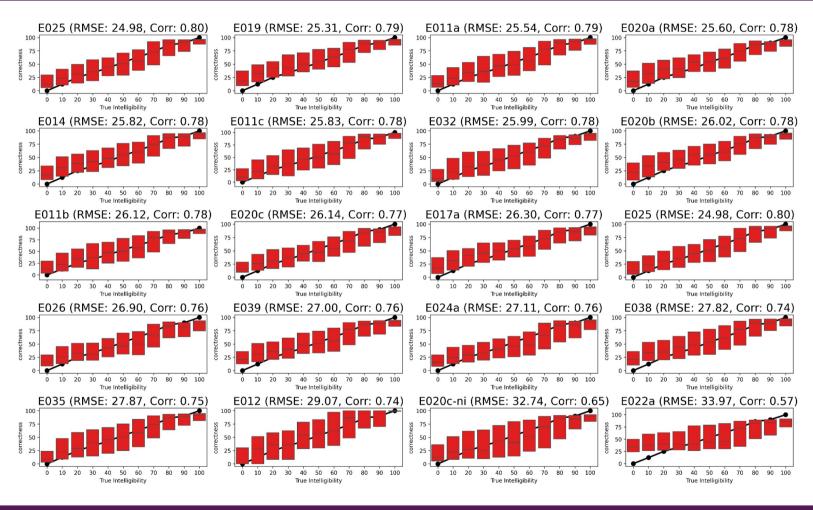
| Paired t-test showed E025      |
|--------------------------------|
| significantly better than E019 |

| Team  | System   | Intr.    | Non-Intr. | Dev RMSE↓ | Eval RMSE ↓      | Corr ↑ |
|-------|----------|----------|-----------|-----------|------------------|--------|
| T001  | E025     | X        |           | 22.36     | $24.98 \pm 0.29$ | 0.80   |
| T002  | E019     |          | X         | 21.87     | $25.31 \pm 0.29$ | 0.79   |
| T003  | E011a    |          | X         | 22.80     | $25.54 \pm 0.29$ | 0.79   |
| T004  | E020a    | X        |           | 23.15     | $25.60 \pm 0.29$ | 0.78   |
| T005  | E014     |          | X         | 22.95     | $25.82 \pm 0.29$ | 0.78   |
| T003  | E011c    |          | X         | 22.89     | $25.83 \pm 0.29$ | 0.79   |
| T006  | E032     | X (Text) |           | 23.60     | $25.99 \pm 0.30$ | 0.78   |
| T004  | E020b    | X        |           | 23.47     | $26.02 \pm 0.30$ | 0.78   |
| T003  | E011b    |          | X         | 22.89     | $26.12 \pm 0.30$ | 0.78   |
| T004  | E020c    | X        |           | 24.81     | $26.14 \pm 0.30$ | 0.77   |
| T007  | E017     | X        |           | 24.05     | $26.30 \pm 0.30$ | 0.77   |
| T008  | E024b    |          | X         | 24.74     | $26.58 \pm 0.30$ | 0.77   |
| T009  | E026     | X        |           | 24.64     | $26.90 \pm 0.31$ | 0.76   |
| T010  | E039     | X        |           | 25.61     | $27.00 \pm 0.31$ | 0.76   |
| T008  | E024a    |          | X         | 24.18     | $27.11 \pm 0.31$ | 0.76   |
| T011  | E038     | X        |           | 24.88     | $27.82 \pm 0.32$ | 0.74   |
| T012  | E035     | X        |           |           | $27.87 \pm 0.32$ | 0.75   |
| T013  | E012     |          | X         | 26.28     | $29.07 \pm 0.33$ | 0.75   |
| Base. | HASPI    | X        |           | 28.00     | $29.47 \pm 0.34$ | 0.70   |
| T004  | E020c-ni |          | X         | 30.16     | $32.74 \pm 0.37$ | 0.65   |
| T014  | E022a    |          | X         | 31.11     | $33.97 \pm 0.39$ | 0.57   |
| T014  | E022b    |          | X         | 33.10     | $35.48 \pm 0.40$ | 0.56   |
| Base. | Prior    |          | X         | 40.20     | $41.33 \pm 0.47$ |        |


Better-ear HASPI v2, Kates + Arehart, 2021

Always output the training set average

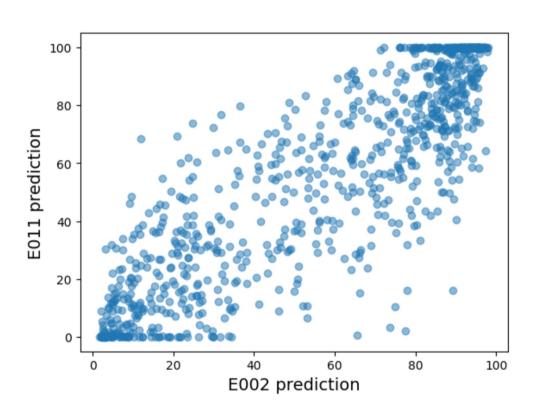


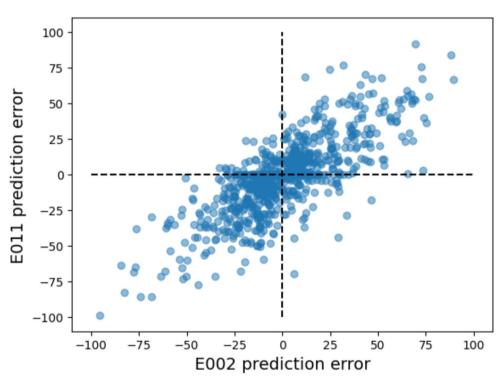



Predicted vs observed intelligibility for winning system





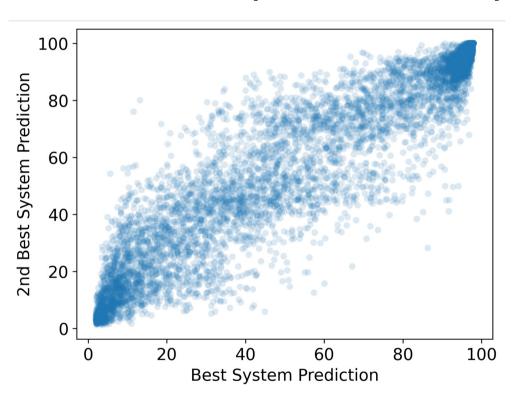


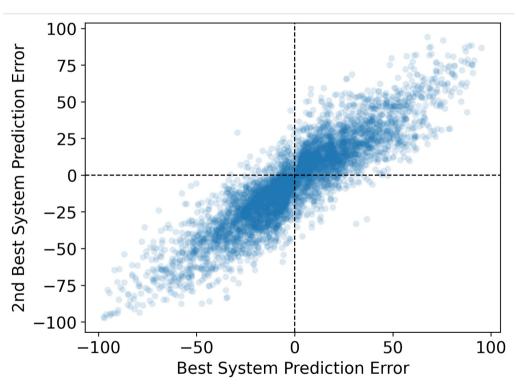








## In CPC2, we observed complementarity among top systems

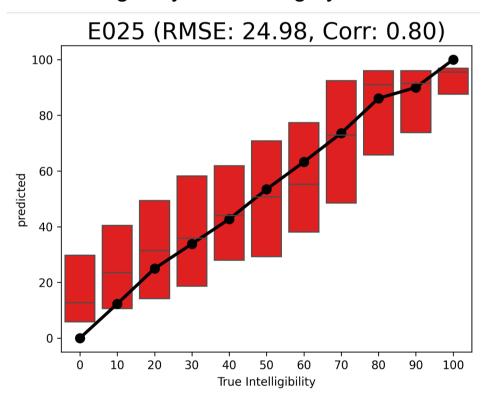






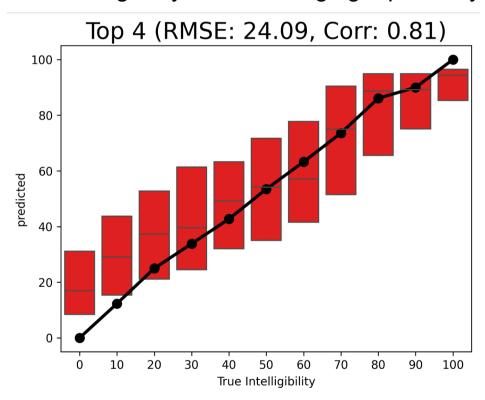

## ... similar pattern for top systems in CPC3







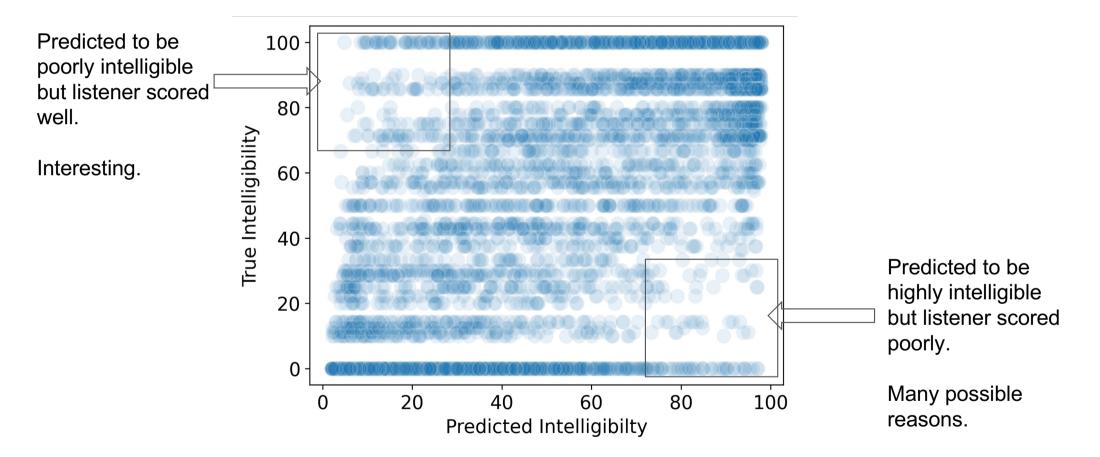




Predicted vs observed intelligibility for winning system





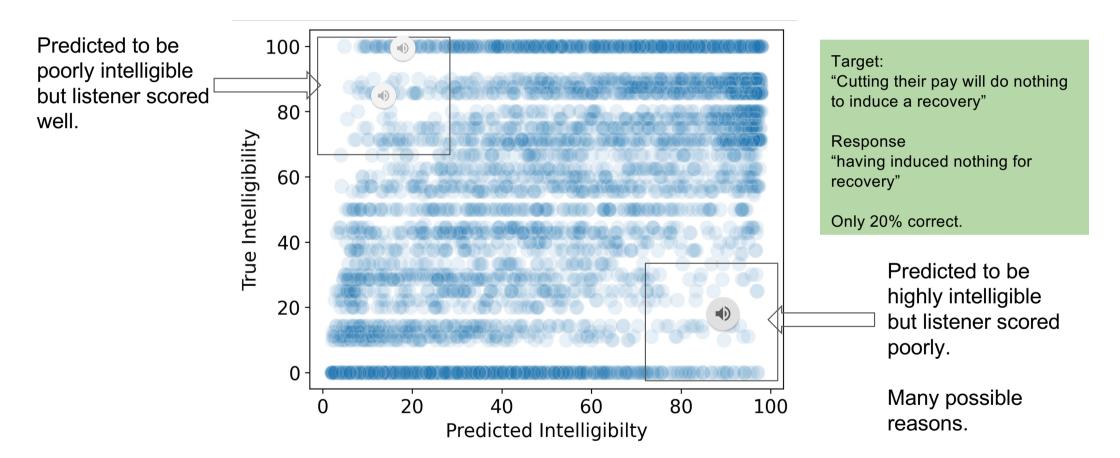



Predicted vs observed intelligibility when averaging top four systems





## Observations








## Considerations







## Some Preliminary Conclusions



- Most of the submitted systems are performing better than the HASPI baseline.
- Many strong non-intrusive approaches are using pre-trained speech models (eg. Whisper).
- Best system was intrusive but it scored only marginally better than the best non-intrusive approach.
- Evidence of real progress in system performance since CPC1, CPC2
  - Non-intrusive systems outperforming intrusive systems
  - Best systems beating HASPI baseline by similar margin to CPC2 despite harder conditions
- Seems very hard to get the RMSE scores down lower than 20%. Many factors simply not predictable from the signal and HL severity alone.





# Thank you for listening.

Questions?