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Abstract

We introduce TextSep, a novel single-channel speech separa-
tion framework that leverages free-form textual description of
a speaker’s voice to guide separation from noisy multi-speaker
audio mixtures, without relying on enrolment audio, images, or
video. Building on advances in text-to-speech (TTS), we in-
vert the Parler-TTS pipeline to extract rich style embeddings
from the earliest cross-modal layer, enabling speech separa-
tion directly from natural language descriptions. Our main
contributions are: (1) Curating a large pair of text description
and clean-audio pairs (2) identifying and utilizing the projected
key vectors of Parler-TTS as effective style embeddings via
a lightweight wrapper; (3) integrating these embeddings into
a transformer based architecture as prefix tokens and through
FiLM modulation of encoder activations; and (4) demonstrat-
ing that TextSep achieves competitive performance on synthetic
benchmarks, without requiring any reference audio or visual
cues.

Index Terms: speech separation, target speaker extraction

1. Introduction

Isolating a single speaker’s voice in multi-speaker environ-
ments, the classic “cocktail party problem”, is a key challenge
for hearing aids. Traditional Target Speech Extraction (TSE)
systems address this using enrolment audio, face images, or
video to identify the target speaker. However, these cues are
often impractical: enrolment audio may simply be unavailable
or degraded, video requires extra hardware, and they all raise
privacy concerns.

This has led to interest in more accessible cues, such as
natural language descriptions. These are user-friendly, privacy-
safe embeddings that capture rich semantic and paralinguis-
tic details (e.g., gender, tone, accent), making them ideal for
speaker identification in real-world applications.

We introduce TextSep, a model that extracts a target
speaker’s voice using only free-form natural language (e.g., “the
man with a calm voice and British accent”). TextSep directly
conditions on these descriptions, offering a practical, intuitive
alternative for hearing aids where explicit enrolment data is un-
available.

Inspired by recent advances in Text-to-Speech (TTS), par-
ticularly the use of natural language prompts to control speaking
style, we leverage Parler-TTS [1] to extract style embeddings
from user-provided descriptions. We repurpose these style em-
beddings to condition our separation model, allowing it to ex-
tract the target speaker’s voice based solely on natural language
input.

A major challenge is the lack of large, richly annotated
datasets with free-form descriptions. Existing datasets are lim-
ited to coarse labels like gender or emotion, which restricts gen-
eralization.

To address this, we release a new dataset of 1 million
(description, clean-speech) pairs, built from MultiVSR [2] au-
dio segments. Our pipeline combines acoustic features from
DataSpeech [3], high-level speaker traits from DeSTA2 [4],
and a language model to generate diverse, natural descriptions.
This scalable approach supports better training and evaluation
of language-guided TSE systems. Our contributions:

* Release a large-scale benchmark of 1M (description, speech)
pairs for natural-language-guided TSE.

* Show that Parler-TTS style embeddings are effective for con-
ditioning separation models.

e Demonstrate that TextSep performs within 0.6 dB of
enrolment-based systems on synthetic benchmarks.

2. Related work

Current approaches to target speech extraction (TSE) relied
on explicit speaker cues, such as enrolment audio or video,
to resolve permutation ambiguity in multi-speaker mixtures
[5, 6,7, 8,9, 10]. While effective, these methods face practi-
cal limitations in many real-world scenarios, particularly when
such cues are unavailable or raise privacy concerns.

Recent research has explored the use of natural language
as a conditioning signal for source separation, spanning appli-
cations from general audio events and music to, increasingly,
speech itself [11, 12, 13, 14]. LASS-Net [13] demonstrated that
textual prompts could be used to extract arbitrary sounds from
mixtures via a shared audio-text embedding space. More re-
cently, several works have extended this paradigm to speech.

LLM-TSE [11] pioneered the integration of large language
models, such as LLaMA-2, to interpret free-form text cues
for TSE, enabling extraction or suppression of speakers based
solely on descriptive prompts. StyleTSE [12] leveraged tex-
tual descriptions of speaking style and emotion, alongside or in-
stead of reference audio even when speakers have similar acous-
tic characteristics. ConceptBeam [15] and contextual speech
extraction approaches have explored topic-based and dialogue-
driven cues, respectively.

Parallel progress in text-to-speech (TTS) has shown that
natural language descriptions can control speaker identity, style,
and channel conditions at synthesis time. Recent TTS models
[1, 16, 17], learn rich acoustic representations from large-scale,
text-annotated corpora, demonstrating fine-grained control via
text. These advances suggest that TTS-derived embeddings can
serve as powerful conditioning vectors for TSE, bridging the
gap between descriptive language and audio generation.

3. Method

This section details TextSep, our text-guided speech-separation
network. We first outline the overall architecture in section 3.1,
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Figure 1: TextSep overview and architecture. A) Method
overview. A free-form description is turned into a style embed-
ding and fed, together with the noisy mixture, into a separation
network that outputs the clean target speech. B) Architecture
details. The description is processed by a frozen FLAN-TS en-
coder; its representations pass through the first cross-attention
layer of Parler-TTS, whose key projections capture acoustic
style. A small linear projection adapts this 1024-D vector to
the separator. The style token conditions the audio path twice:
(i) via FiLM on the encoder features and (ii) as prefix tokens
for the 3-layer transformer bottleneck. The decoder then recon-
structs the separated speech.

then describe how the textual description is converted into an
acoustic style embedding 3.3. We next explain how the trans-
former bottleneck exploits that embedding during separation,
motivate key design choices 3.4, and finally list training and
fine-tuning protocols 3.5

3.1. Architecture Overview
The model architecture consists of four main components:

1. Waveform Encoder: A U-Net-based encoder processes the
input audio mixture, extracting a sequence of latent features
that compactly represent the acoustic content of the mixture.

2. Text-to-Style Embedding Module: The free-form textual
description provided by the user is converted into a style em-
bedding. This embedding captures key characteristics de-
scribed in the text and acts as a conditioning signal through-
out the separation process.

3. Transformer Bottleneck: The encoded audio features and
the text-derived style embedding are jointly processed by a
transformer bottleneck. This component enables rich cross-
modal interactions, allowing the network to align acoustic
features with the specified style, and effectively focus on the
target speaker within the mixture.

4. Waveform Decoder: A decoder reconstructs the time-
domain waveform of the separated speech from the trans-
formed latent features, completing the separation process.

A schematic of the full architecture is shown in Figure 1.
The following provide detailed descriptions of full pipeline.

3.2. Architecture Details

The input to the model is a 16 kHz mono audio mixture a € R7 .
The waveform encoder consists of a five-level, one-dimensional
U-Net that maps the mixture to a sequence of latent features.
Specifically, the encoder transforms the input into a tensor of
shape A € RE*Terc where the channel dimension C = 768,
and the temporal downsampling reduces the sequence length to
Tenc =T /4.

To condition the network on the desired speaker, a free-
form textual description z is mapped to a 1024-dimensional
style embedding, as detailed in 3.3. This style token serves a

dual purpose. First, it is projected through a two layers of 1 x 1
convolution to C' = 768 and is prepended to the encoded au-
dio feature sequence A, forming the input H = [z®'; A] ¢
REATe)XC (6 the transformer bottleneck. The style token is
projected to match the channel width of the audio features and
pooled to form the conditioning vector for a FILM generator.
This generator applies feature-wise scaling and bias to the en-
coded audio, providing an additional conditioning pathway that
allows for channel-selective gain control.

To condition the network on the desired speaker, a free-
form textual description (e.g., A woman talking in a fast paced
excited style with high pitch) is mapped to a 1024-dimensional
style embedding, as detailed in 3.3. This style token serves a
dual purpose. First, it is projected to match the channel width
of the audio features through a two layers of 1 x 1 convo-
Iution to C' = 768. The projection is prepended as a se-
quence of L = 10, using a learnable positional encoding, as
prefix to the encoded audio feature sequence, forming the in-
put H = [28'; A] € REAT)XC (o the transformer bottle-
neck. Second, the style token is also pooled to form the con-
ditioning vector for a FiLM generator. This generator applies
feature-wise scaling and bias to the encoded audio, that applies
channel-wise scaling/shifting to A to enhance the channels that
match the target style and suppress others.

At the core of the network is a three-layer transformer en-
coder with eight attention heads (dim C) per layer, operating
jointly on the sequence of audio and style tokens.

Given the concatenated sequence H each transformer layer
performs

QK'
CrossAttn(Q = H, K = H, V = H) = softmax v
Vi

H/ = CrossAttn(Q, K, V) + FEN(-)

This enables cross-modal interactions between the audio fea-
tures and the text-derived conditioning. Audio queries learn to
pull from the style keys that best match their timbre/prosody
hypothesis, suppressing other speakers. While text queries can
refine themselves by attending to the noisy audio, improving ro-
bustness when the prompt is imprecise and learn to ignore filler
word. R

The output of the transformer, denoted A, is then processed
by a mirrored U-Net decoder to reconstruct the estimated target
waveform a. at 16 kHz. A residual skip connection from the
encoder to the decoder enables the preservation of fine acoustic
details.

3.3. Text Description Encoding

TextSep employs a natural language description of the target
speaker as its primary conditioning input. Given a caption C, we
extract the style token from Parler-TTS Mini v1.1. The descrip-
tion is first processed by a frozen Flan-T5 encoder to produce
contextualized token embeddings Hrs € RE*10%4 These em-
beddings are then projected to match the dimensionality of the
Parler-TTS transformer decoders via a learned linear mapping.
From Parler-TTS we extract the cross-attention key projection
of the first transformer layer:

K= Wk Hdec

where W, denotes the key projection matrix of the first trans-
former decoder layer. A simple mean pooling operation is
then applied across the sequence to obtain a fixed-length 1024-
dimensional style embedding z € R!0%*,



We observe that this embedding encodes key attributes such
as gender, pitch, speaking rate, and recording environment,
while remaining close to the pure language semantics of the
prompt. Therefore the style token is well-suited to serve as a
conditioning signal for the separation network, as it is both se-
mantically informative and acoustically meaningful. This vec-
tor is only one linear layer away from pure language semantics,
making it ideal for guiding a separator.

3.4. Design Decisions

The use of the projected key vectors from the first decoder layer
of Parler-TTS was motivated by two factors: First, the separa-
tion model can operate with minimal discriminatory informa-
tion about the target speaker [6]. Furthermore, it is the earli-
est point where language meets acoustics; higher-layer embed-
dings became increasingly entangled with speaker-independent
prosody and codebook context, which are not directly useful for
the separation task. We apply mean pooling over the token se-
quence which provides a fixed-length embedding that is compu-
tationally efficient and avoids the need for padding logic, with
minimal impact on performance. The one-dimensional convo-
lutional projection from 1024 to 768 dimensions acts as a per-
timestep linear layer with negligible parameters. This allows the
network to learn which dimensions of z matter, while match-
ing the audio channel width. Finally, we combine prefix token
injection with FiLM-based conditioning. The FiLM pathway
allows channel-selective gain, biasing early convolutional fea-
tures toward frequencies characteristic of the described voice.
While the the token prefix allows for time-selective masking
through the transformer cross-attention layers.

3.5. Training and Implementation Details

The training set consists of two-speaker mixtures synthesized
from a subset of the MultiVSR corpus, with background noise
from the DNS dataset added at random SNRs between 1-10 dB
to simulate realistic conditions. Each instance pairs an audio
segment with its corresponding description, using utterances
from different speakers with at least two differing attributes.
Mixtures are generated on-the-fly.

Training begins with pre-training the audio-only VoiceVec-
tor model on MultiVSR using standard speaker embeddings,
following the original protocol [9]. The U-Net backbone is ini-
tially frozen while the projection and transformer modules are
trained on mixtures with maximally distinct speaker attributes.
This constraint is gradually relaxed to allow two differing at-
tributes. In the final stage, the full separation model is jointly
fine-tuned.

The loss function combines waveform ¢; loss between pre-
dicted a. and ground-truth a. speech, along with proxy SDR
loss [18] on short windows. Training uses Adam (=0.9, =0.95),
a learning rate of 5x10, and cosine decay to 2 x 107°.

4. Experiments

This section describes the datasets, implementation details,
experimental setup, and results used to evaluate TextSep for
natural-language—guided speech separation. We conduct rigor-
ous comparisons with relevant baselines and analyse the impact
of various architectural and design choices.

4.1. Dataset

Training and evaluation are performed on synthetic two-speaker
mixtures derived from a subset of the MultiVSR corpus, which
contains 1,400 hours of transcribed audio-visual recordings
spanning diverse accents, genders, topics, and speaking styles.
Each mixture combines two randomly selected utterances that
differ in at least two speaker attributes to ensure diversity and
avoid trivial cases.

The dataset includes 1,000,000 (mixture, description) pairs,
split into 950,000 ( 1300 hours) for training, and 25,000 each
( 50 hours) for validation and testing. Audio is resampled to
16 kHz, and each training unit is a 5.0-second (0.8-12 s) clip
paired with a natural language description.

Following DataSpeech [3], we compute three acoustic fea-
tures; C50 reverberation, pitch, and speaking rate discretized by
global dataset statistics.

To enrich speaker descriptions, we use the DeSTA2-8B-
beta [4] model to extract six additional attributes: age, accent,
timbre, tone, speech topic, thythm, and emotion. We also iden-
tify the most salient trait per speaker, yielding eleven descrip-
tive categories when combined with gender and DataSpeech at-
tributes. Generic terms like “natural” or “average” are excluded
for specificity.

These keywords are input to Llama-3.1-8B-Instruct!, which
generates fluent, context-rich descriptions such as “A young
woman with a lively tone and Australian accent...” This fully
automated pipeline enables scalable, diverse, and natural data
creation.

For evaluation, we construct the synthetic MultiVSR-Mix
test set using unseen speakers and adding ambient noise. The
25,000 evaluation mixtures are built from held-out utterances,
with minimal domain gap to real conversational speech, ensur-
ing real-world relevance.

4.2. Evaluation Metrics

We assess model performance using standard metrics widely
adopted in speech separation and perceptual quality evaluation.
Signal-to-Distortion Ratio (SDR) is used to quantify separation
quality, with higher values indicating more accurate recovery of
the target speech. Short-Time Objective Intelligibility (STOI) is
measured to estimate the intelligibility of the separated speech
output, while Perceptual Evaluation of Speech Quality (PESQ)
is used to reflect the perceived audio quality from a listener’s
perspective.

4.3. Results

To evaluate TextSep, we conduct a series of experiments com-
paring its performance to several baselines and ablations. The
baselines include VoiceVector [9], which serves as a speaker-
conditional reference and utilizes a 192-dimensional ECAPA-
TDNN [19] speaker embedding derived from enrolment au-
dio. We fine-tuned a variation of our model we name CLAP-
Sep. It represents a text-conditional approach, employing a
512-dimensional LAION-CLAP [20] text embedding. Addi-
tionally, we compare against a previous state-of-the-art audio-
visual (AV) system that requires video (lip) input, representing
multimodal separation performance.

All baseline and ablation models are trained and evaluated
using the same test set.

Table 1 summarizes the quantitative results in comparison

Uhttps://huggingface.co/meta-llama/Llama-3.1-8B-Instruct



Table 1: Speech separation results on the synthetic test set. v'
indicates modality used for conditioning: video (Vid), speaker
embedding (Spk), and text description (Txt). 1 means higher is
better.

Model Vid Spk Txt \ SDR 1 STOI1 PESQ T
Noisy input - - - 1.3 69.7 1.30
VoiceFormer [5] v - - 15.5 934 2.60
VF (Phonemes) [5] - - v 14.1 91.4 2.37
VoiceVector [9] - v - 14.4 91.1 2.52
CLAP-Sep - - Vv 11.8 89.4 2.20
TextSep (T5) - - Vv 12.9 89.6 2.24
TextSep (desc.) - - v 13.8 91.1 2.36

to models that use other modalities than text description such as
lip-motion, speaker embeddings and transcription.

The noisy input baseline, representing the unprocessed au-
dio mixture, shows an SDR of 1.3 db, 69.7 STOI, and 1.31
PESQ. This confirms the difficulty of the separation task. The
previous audio-visual SOTA method, which leverages both au-
dio and video (lip) information, achieves 15.5 dB SDR, high-
lighting the benefit of multimodal cues but requiring video in-
put.

The VoiceVector (speaker embeddings), which is condi-
tioned on a 192-dimensional ECAPA speaker embedding de-
rived from enrolment audio, yields 14.4 dB SDR. This demon-
strates the strength of speaker-conditional models when enrol-
ment audio is available. The CLAP-Sep baseline conditions the
separator on a 512-dimensional LAION-CLAP text embedding,
which captures primarily semantic information. Despite this,
CLAP-Sep attains 11.8 dB SDR, showing that generic text em-
beddings, while effective, fall short of acoustic conditioning.

For TextSep-transcription, where the model is conditioned
on transcription tokens encoded by a TS5 model [21], perfor-
mance drops to 13.2 dB suggesting that phoneme-level infor-
mation offers a stronger signal than transcription embeddings
using T5. This is because there is a direct correlation between
phonemes and the audio signals which the transformer bottle-
neck is able to attend to.

This also remains inferior to embeddings tuned for acoustic
style. Our proposed TextSep-KO model, which uses the layer-0
key vectors from Parler-TTS as style embeddings based on the
provided natural language description, achieves 13.8 dB SDR.
Notably, TextSep-K operates without any reference audio or vi-
sual information at test time. matching or exceeding the per-
formance of enrolment-based speaker-conditional systems and
outperforming all other text-based approaches by a substantial
margin. This establishes TextSep as a practical and effective
system for text-guided target speech extraction, closing the gap
with audio-visual and speaker-conditioned systems that require
explicit enrolment samples.

4.4. Ablation Study:

To better understand the factors contributing to the performance
of TextSep, we conduct an ablation study focusing on several
critical design choices: the richness of the textual prompt, the
choice of embedding layer from Parler-TTS, the method of to-
ken aggregation, and the role of FILM conditioning. Table 2
reports performance for each configuration on the MultiVSR
test set.

Our results indicate that increasing the descriptive richness

Table 2: Ablation studies on TextSep architecture (SDR, STOI,
PESQ on MultiVSR test set). 1 higher is better.

Variant SDR (dB)1 STOI1T PESQ
Prompt: 3 attributes 129 89.4 2.28
Prompt: 4 attributes 13.7 91.1 2.34
Prompt: 5 attributes 13.8 91.1 2.34
TextSep-KO: layer-0 keys 13.8 91.2 2.35
TextSep-K1: layer-1 keys 13.9 91.4 2.35
All tokens (no pooling) 13.9 91.3 2.36
FiLM removed 13.4 91.1 2.27

of the prompt, by adding more attributes, yields notable gains
in separation quality. Moving from a prompt with 3 attributes
to one with 4 increases the SDR from 12.9 dB to 13.7 dB, with
a corresponding improvement in intelligibility and perceptual
quality (STOI rising from 89.4 to 91.1 and PESQ from 2.28 to
2.36). Adding a fifth attribute results in marginal further im-
provement, suggesting diminishing returns as the prompt be-
comes saturated with relevant detail.

Examining the effect of the embedding source, we find that
the default use of Parler-TTS layer-0 key vectors (TextSep-KO0)
provides strong results (13.8 dB SDR, 91.2 STOI, 2.35 PESQ),
with layer-1 (TextSep-K1) keys and using all tokens without
pooling yielding only very slight additional gains. This sug-
gests that layer-0 already captures the critical cross-modal style
information required for effective separation, and more complex
or higher-level embeddings offer minimal advantage in this set-
ting.

The ablation also highlights the importance of the FiLM
pathway. Removing FiLM modulation results in a notable drop
in performance, with SDR decreasing to 13.4 dB and PESQ to
2.27. This confirms that FILM-based conditioning contributes
non-trivially to TextSep’s overall effectiveness, both in signal
fidelity and perceived quality.

Collectively, these findings validate the choice of a suc-
cinct, attribute-rich textual prompt and the use of layer-0 Parler-
TTS keys embeddings. They also underscore the crucial role of
FiLM conditioning, while showing that additional complexity
in the form of more attributes or alternative token aggregation
schemes yields only incremental benefits.

5. Discussions

In this work, we introduced TextSep, a natural-language—guided
speech separation framework that leverages advances in large-
scale text-to-speech (TTS) models to enable extraction of a tar-
get speaker from noisy multi-speaker mixtures using only a nat-
ural textual description. Our approach inverts the TTS pipeline:
instead of generating speech from text, we extract a style em-
bedding from a natural language prompt using the earliest cross-
modal layer of a pre-trained Parler-TTS model and use this em-
bedding to guide waveform-level speech separation via a U-Net
transformer architecture.

We demonstrated that TextSep achieves separation perfor-
mance competitive with traditional speaker-conditional systems
that rely on enrolment audio, as well as prior multimodal and
phoneme-level text-conditioned baselines.
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