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Abstract
Deep learning-based hearing loss compensation (HLC) seeks to
enhance speech intelligibility and quality for hearing impaired
listeners using neural networks. One major challenge of HLC
is the lack of a ground-truth target. Recent works have used
neural networks to emulate non-differentiable auditory periph-
eral models in closed-loop frameworks, but this approach lacks
flexibility. Alternatively, differentiable auditory models allow
direct optimization, yet previous studies focused on individual
listener profiles, or joint noise reduction (NR) and HLC without
balancing each task. This work formulates NR and HLC as a
multi-task learning problem, training a system to simultaneously
predict denoised and compensated signals from noisy speech
and audiograms using a differentiable auditory model. Results
show the system achieves similar objective metric performance
to systems trained for each task separately, while being able to
adjust the balance between NR and HLC during inference.
Index Terms: differentiable auditory model, noise reduction,
hearing loss compensation

1. Introduction
Hearing impairment affects millions of people worldwide, im-
pacting social interactions, cognitive function, and overall qual-
ity of life. While hearing aids can mitigate these challenges,
users often report difficulties understanding speech in complex
acoustic environments. Currently, NR and HLC in hearing aids
primarily rely on simplistic algorithms like beamforming and
frequency band amplification. However, deep learning offers
the potential to surpass these traditional methods, as it allows
complex non-linear mappings between noisy speech, listener
profiles, and optimal HLC strategies.

Unlike conventional tasks such as speech enhancement
where defining a training objective using the ground-truth target
is straightforward, HLC is more challenging due to the absence
of such a target. Recent studies have tackled this by training
auxiliary neural networks to emulate non-differentiable auditory
peripheral models [1, 2, 3]. These emulators were then used
in closed-loop optimization frameworks [4, 5, 6, 7]. While this
approach facilitates HLC algorithm training, it lacks flexibility,
since retraining is required whenever the auditory model is up-
dated. Additionally, most studies have trained these systems
for individual listener profiles, using auditory models describing
detailed physiological processes, some of which may not be
necessary for achieving perceptual benefits in hearing aids.

Another approach involves designing differentiable auditory
models that can directly be integrated into the optimization of
the HLC algorithm. This makes it easier to explore which audi-
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tory model stages are essential for delivering perceptual benefits.
Studies adopting this approach [8, 9, 10] have shown that trained
HLC algorithms can outperform traditional hearing aid prescrip-
tions in both quiet [8] and noisy [9] conditions, as measured by
objective metrics. However, these efforts often utilize simplistic
systems with very few trainable parameters, such as fixed finite
impulse response (FIR) filterbanks with learnable gains, and they
continue to train systems for individual listener profiles.

Recent studies have trained listener-independent systems for
NR and HLC [11, 12, 13]. However, the proposed algorithms are
unable to perform NR or HLC in a controllable manner during
inference. Studies have shown that there exist sub-populations
of HI listeners who prefer strong NR over mild NR [14, 15]. Ad-
ditionally, users may want to prioritize NR or HLC depending on
the listening environment. For example, in very noisy environ-
ments, users may wish for strong NR, while in social gatherings,
they may prefer HLC without NR. Therefore, the ability to ad-
just the balance between NR and HLC during inference can be a
valuable feature in hearing aids.

In this work, we propose a multi-task learning framework
for joint NR and HLC. A differentiable auditory model is used
for training a speech processor to simultaneously predict a de-
noised and a compensated signal from a noisy input speech
signal and an audiogram. Each task is assigned a distinct
training objective, and these objectives are combined using an
uncertainty-based weighting scheme [16]. During inference,
the system can flexibly mix the two output signals to enable
controllable joint NR and HLC. Code is available online at
https://github.com/philgzl/cnrhlc.

2. Typical framework
Figure 1 shows a typical framework for training a speech proces-
sor Fθ for NR-only, HLC-only, or joint NR and HLC without
control. The speech processor input is noisy speech x and its
output is fed to a normal hearing (NH) or hearing impaired (HI)
differentiable auditory model ANH or AHI. If the task includes
HLC, Fθ and AHI also take an audiogram a as input. The
target signal is the corresponding clean speech y or the same
noisy speech x, and is fed to a NH auditory model ANH. The
speech processor is then optimized to minimize a loss function ℓ
between the output of the two auditory models. Whether the
auditory model at the output of the speech processor is NH or
HI and the target signal is clean or noisy depends on the task:
• If the auditory model at the output of the speech processor is

NH and the target signal is clean, then the speech processor is
optimized for NR-only. The training objective is

LNR = ℓ
(
ANH

(
Fθ(x)

)
,ANH(y)

)
. (1)

This is similar to traditional speech enhancement, except that

https://github.com/philgzl/cnrhlc


Speech
processor

Noisy input Loss

Audiogram

Normal or impaired
differentiable

auditory model
or

Clean or noisy target or
Normal

differentiable
auditory model

Figure 1: Typical framework for NR-only, HLC-only, or joint NR
and HLC without control.

the training objective is based on an auditory model instead
of e.g. signal-to-distortion ratio (SDR). For this task, no au-
diogram is fed to the speech processor nor the auditory model
at its output. While denoising can improve the intelligibility
and quality of speech, HI listeners require additional HLC.

• If the auditory model at the output of the speech processor is
HI and the target signal is noisy, then the speech processor is
optimized for HLC-only,

LHLC = ℓ
(
AHI

(
Fθ(x, a), a

)
,ANH(x)

)
. (2)

The speech processor is tasked with compensating for the hear-
ing loss modeled in the auditory model at its output. However,
background noise is not removed, which can be detrimental
to the intelligibility and quality of speech.

• If the auditory model at the output of the speech processor is
HI and the target signal is clean, then the speech processor is
optimized for joint NR and HLC,

LNR-HLC = ℓ
(
AHI

(
Fθ(x, a), a

)
,ANH(y)

)
. (3)

However, since a single loss term is used, it is unclear if the
speech processor prioritizes NR or HLC, and it is not possible
to control for each task at inference time.

3. Proposed framework
Figure 2 shows the proposed framework for training the speech
processor Fθ for controllable joint NR and HLC. Given noisy
speech x and an audiogram a, the speech processor outputs both
a denoised signal ŷNR and a compensated signal ŷHLC,

Fθ(x, a) = (ŷNR, ŷHLC). (4)

A loss term is defined for each task,

LNR = ℓ
(
ANH(ŷNR),ANH(y)

)
, (5)

LHLC = ℓ
(
AHI(ŷHLC, a),ANH(x)

)
. (6)

The final training objective can be defined as a weighted sum of
LNR and LHLC. However, finding the optimal weights using a
grid search is time-consuming. Moreover, the results can be very
sensitive to the choice of the weights, and the optimal weights
can vary during training. One option is to model the predictions
as isotropic Gaussian distributions, and adjust the weights dy-
namically based on the uncertainty of the predictions [16]. In
practice, the method consists in optimizing two additional param-
eters uNR = log σ2

NR and uHLC = log σ2
HLC, where σNR > 0

and σHLC > 0 represent the homoscedastic uncertainty related
to each task. The final training objective is

LC-NR-HLC =
LNR

euNR
+ uNR +

LHLC

euHLC
+ uHLC. (7)
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Figure 2: Proposed framework for controllable joint NR and
HLC.

Intuitively, each loss term is weighted down if the related uncer-
tainty is high. At the same time, since the log-uncertainties are
added to the final training objective, they are encouraged to be
as small as possible.

Similar to how unprocessed and beamformed signals are
mixed in hearing devices [17], the denoised and compensated
signals are mixed using a parameter α ∈ [0, 1],

ŷ = αŷNR + (1− α)ŷHLC. (8)

This allows the balance between NR and HLC to be adjusted
without the need to retrain the speech processor.

4. Experimental setup
4.1. Speech processor

The speech processor is based on the band-split recurrent neural
network (BSRNN) [18]. BSRNN achieves state-of-the-art results
for speech enhancement [19, 20], and provides an excellent trade-
off between computational complexity and performance [21].
Figure 3 shows an overview of the speech processor architec-
ture. The speech processor takes as input the short-time Fourier
transform (STFT) of the noisy speech X ∈ CF×T , where F is
the number of frequency bins and T is the number of frames.
The band-split module transforms the real and imaginary part of
K pre-defined frequency bands into a fixed number of channels
N using band-specific fully connected layers. Dual-path mod-
elling [22] across time frames and frequency bands is performed
using residual long short-term memory (LSTM) blocks in L lay-
ers. Features are extracted from the audiogram using a fully con-
nected layer followed by Tanh activation, and fed to each layer
using FiLM conditioning [23]. The mask estimation module
predicts both a mask and a residual spectrogram similarly to [20]
for each output signal using band-specific multilayer perceptrons
(MLPs). The mask and residual spectrogram for the denoised
signal are denoted as MNR ∈ CF×T and RNR ∈ CF×T , respec-
tively. The mask and residual spectrogram for the compensated
signal are denoted as MHLC ∈ CF×T and RHLC ∈ CF×T ,
respectively. The STFT of the denoised and compensated signals
ŶNR and ŶHLC are calculated as

ŶNR = MNR ⊙X +RNR, (9)

ŶHLC = MHLC ⊙X +RHLC. (10)

The STFT uses a frame length of 32 ms, a hop size of 16 ms,
and a Hann window. We use K = 27 frequency bands with
a bandwidth of 200 Hz between 0 and 4 kHz, 500 Hz between
4 and 7 kHz, and 1 kHz between 7 and 8 kHz. The number of
channels is N = 64, and the number of layers is L = 6. The
number of trainable parameters varies between 4.1 and 4.7 M
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Figure 3: Speech processor based on BSRNN [18]. Features
extracted from the audiogram are fed to each layer using FiLM
conditioning. The mask estimation module outputs a complex-
valued mask and residual spectrogram for the denoised signal,
the compensated signal, or both.

depending on whether the speech processor is trained for NR,
HLC, or both. Processing a 1-s-long input requires 4.6 giga
multiply-accumulate (GMAC) operations.

4.2. Differentiable auditory model

The differentiable auditory model is based on the computa-
tional model of human auditory signal processing and perception
(CASP) [24]. CASP can successfully predict the behavior of
NH listeners in a wide range of psychoacoustic tasks, such as
intensity discrimination, spectral and temporal masking, and
modulation detection. It can also simulate hearing loss, and pre-
dict the average behavior of HI listeners [25]. The original model
includes outer and middle ear filters, a dual-resonance non-linear
(DRNL) filterbank [26], an inner hair cell transduction stage,
adaptation loops [27], and a modulation filterbank [28].

A simplified and differentiable version of CASP is imple-
mented. The outer ear filter is removed. The gammatone and
low-pass filters in the DRNL filterbank are implemented as 32-
ms-long FIR filters to reduce training runtimes. We use 31 filters
with center frequencies spaced by one unit on the equivalent rect-
angular bandwidth (ERB)-rate scale between 80 and 7643 Hz.
The inner hair cell transduction stage consists of half-wave recti-
fication and low-pass filtering with a cutoff frequency of 1 kHz.
The adaptation loops are replaced with an instantaneous log-
compression stage achieving the same steady-state gain. The
modulation filterbank is removed.

Following previous studies [29, 30, 31], outer and inner hair
cell hearing losses HLOHC and HLIHC are defined for each
frequency in dB as

HLOHC = min

(
2

3
HLtot,HLmax

OHC

)
, (11)

HLIHC = HLtot −HLOHC, (12)

where HLtot is the total hearing loss as indicated by the au-
diogram, and HLmax

OHC is the maximum outer hair cell loss that
can be modeled by the DRNL filterbank. Outer and inner hair
cell losses are applied as gain functions to the broken stick non-
linearity of the DRNL filterbank and to the output of the inner
hair cell transduction stage, respectively. Audiogram thresholds
are extrapolated to the center frequencies of the DRNL filterbank
using linear interpolation.

4.3. Datasets

The speech processors are trained with noisy and rever-
berant speech generated using simulated room impulse re-
sponses (RIRs). The clean speech utterances are selected from
DNS5 [32], LibriSpeech [33], MLS [34], VCTK [35], and
EARS [36]. The noise segments are selected from DNS5 [32],
WHAM! [37], FSD50K [38], and FMA [39]. The total amount
of available speech and noise is 1713 and 541 h, respectively.
The RIRs are simulated as in [40]. Each scene is simulated
by placing one speech source and up to three noise sources in
the same room. The room size is randomly selected between
3×3×2.5 and 10×10×4 m3. The reverberation time T60 is ran-
domly selected between 0.1 and 0.7 s. The signal-to-noise ratio
(SNR) between the reverberant speech and each reverberant
noise source is randomly selected between −10 and 20 dB. Early
reflections are included in the clean signal y using a reflection
boundary of 50 ms [41]. Scenes are generated on-the-fly during
training. For testing, 1000 scenes are generated using speech
utterances from Clarity [42], noise segments from TUT [43], and
RIRs from DNS5 [32]. All the considered datasets are publicly
available. The sampling frequency is 16 kHz.

4.4. Training

The speech processors are trained with 2 000 000 4-s-long scenes.
We use a batch size of 32 and the Adam optimizer [44] with an
initial learning rate of 1e−3. The learning rate is reduced by a
factor of 0.99 every 10 000 scenes. Gradients are clipped with a
maximum L2 norm of 5. Training takes approximately 36 h on
a single A100 40 GB graphics processing unit (GPU).

4.5. Audiograms

We consider the 10 standard audiograms from [45] as well as
the NH audiogram. For each training scene, an audiogram a is
randomly selected, and a random jitter in [-10, 10] dB is applied
to each threshold to increase diversity. Thresholds are finally
clipped to [0, 105] dB. During testing, each scene is processed
for each of the 11 profiles. Audiogram frequencies are fixed to
250, 375, 500, 750, 1000, 1500, 2000, 3000, 4000 and 6000 Hz.

4.6. Configurations

The following speech processor configurations are compared:
• BSRNN-SDR: system trained for NR-only using SDR.
• BSRNN-NR: system trained for NR-only using Eq. (1).
• BSRNN-HLC: system trained for HLC-only using Eq. (2).
• BSRNN-NR-HLC: system trained for uncontrollable joint NR

and HLC using Eq. (3).
• BSRNN-C-NR-HLC: system trained for controllable joint NR

and HLC using Eq. (7).
Additionally, the systems using auditory model-based objectives
are trained with either the mean squared error (MSE) or the mean
absolute error (MAE) as the loss function ℓ.



Table 1: Objective metrics for the different speech processor
configurations.

ℓ α a SDR PESQ ESTOI HASPI HASQI

Noisy - - NH −0.15 1.31 0.58 0.85 0.33
BSRNN-SDR - - NH 13.21 2.19 0.85 0.96 0.47
BSRNN-NR MSE - NH 11.78 1.80 0.82 0.93 0.42
BSRNN-NR MAE - NH 12.80 1.96 0.85 0.95 0.46
BSRNN-HLC MSE - NH −0.25 1.31 0.58 0.85 0.33
BSRNN-HLC MAE - NH −0.12 1.31 0.58 0.85 0.33
BSRNN-NR-HLC MSE - NH 9.45 1.67 0.77 0.91 0.38
BSRNN-NR-HLC MAE - NH 7.16 1.16 0.84 0.89 0.37
BSRNN-C-NR-HLC MSE 0.0 NH −0.20 1.31 0.58 0.85 0.33
BSRNN-C-NR-HLC MAE 0.0 NH −0.17 1.31 0.58 0.86 0.33
BSRNN-C-NR-HLC MSE 0.8 NH 9.10 1.64 0.68 0.87 0.37
BSRNN-C-NR-HLC MAE 0.8 NH 9.91 1.82 0.70 0.92 0.44
BSRNN-C-NR-HLC MSE 1.0 NH 10.88 1.76 0.80 0.93 0.41
BSRNN-C-NR-HLC MAE 1.0 NH 13.00 2.14 0.85 0.95 0.48

Noisy - - HI −0.15 1.31 0.58 0.39 0.23
BSRNN-SDR - - HI 13.21 2.19 0.85 0.43 0.25
BSRNN-NR MSE - HI 11.78 1.80 0.82 0.41 0.25
BSRNN-NR MAE - HI 12.80 1.96 0.85 0.43 0.26
BSRNN-HLC MSE - HI −38.38 1.05 0.45 0.64 0.27
BSRNN-HLC MAE - HI −39.82 1.05 0.47 0.68 0.27
BSRNN-NR-HLC MSE - HI −34.29 1.07 0.59 0.74 0.32
BSRNN-NR-HLC MAE - HI −35.17 1.11 0.65 0.80 0.33
BSRNN-C-NR-HLC MSE 0.0 HI −38.24 1.06 0.47 0.64 0.28
BSRNN-C-NR-HLC MAE 0.0 HI −39.94 1.06 0.48 0.67 0.28
BSRNN-C-NR-HLC MSE 0.8 HI −24.60 1.08 0.51 0.65 0.36
BSRNN-C-NR-HLC MAE 0.8 HI −26.29 1.09 0.51 0.68 0.36
BSRNN-C-NR-HLC MSE 1.0 HI 10.97 1.76 0.80 0.41 0.24
BSRNN-C-NR-HLC MAE 1.0 HI 13.04 2.14 0.85 0.43 0.26

5. Results
The different speech processor configurations are evaluated us-
ing SDR, perceptual evaluation of speech quality (PESQ) [46],
extended short-term objective intelligibility (ESTOI) [47], hear-
ing aid speech perception index (HASPI) [48], and hearing aid
speech quality index (HASQI) [49]. SDR, PESQ, and ESTOI re-
flect NR performance, while HASPI and HASQI reflect joint NR
and HLC performance. The results are averaged separately for
scenes processed with NH and HI audiograms a, and reported in
Tab. 1. Systems trained for joint NR and HLC can be prompted
with a NH audiogram to compare them with systems trained for
NR-only. When prompted with HI audiograms, systems trained
for NR-only achieve poor HASPI and HASQI results, since HLC
is required. Conversely, systems trained for HLC achieve poor
SDR, PESQ, and ESTOI results, since the provided amplification
causes the output to deviate from the clean signal. For the con-
trollable system BSRNN-C-NR-HLC trained for joint NR and
HLC, setting the mixing parameter α = 0 enables HLC-only,
while α = 1 enables NR-only. Key observations include:

• When prompted with α = 1, the controllable system BSRNN-
C-NR-HLC trained with MAE outperforms its counterpart
BSRNN-NR trained for NR-only in terms of SDR and PESQ.
This is observed despite BSRNN-C-NR-HLC being designed
to predict both a denoised and a compensated signal for a wide
range of listener profiles using a similar number of trainable
parameters. This aligns with the assumption that learning
multiple related tasks simultaneously can produce better inter-
nal representations and stronger generalization compared to
learning each task separately [50].

• Similarly, BSRNN-C-NR-HLC achieves superior HASQI re-
sults to the uncontrollable system BSRNN-NR-HLC for HI
listeners and α = 0.8, and superior SDR and PESQ results for
NH listeners and α = 1, even though BSRNN-C-NR-HLC
predicts both a denoised and a compensated signal using a
similar number of trainable parameters.
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Figure 4: HASPI and HASQI as a function of the mixing param-
eter α, when using HI audiograms and MAE loss.

• While the highest SDR and PESQ results are achieved by
BSRNN-SDR, systems trained using the proposed differen-
tiable auditory model achieve comparable NR performance.
This suggests that the output of the proposed differentiable
auditory model is a valid training target for NR.

Figure 4 shows the HASPI and HASQI results as a function
of the mixing parameter α for the controllable system BSRNN-
C-NR-HLC, using HI audiograms and MAE loss. The results for
the uncontrollable system BSRNN-NR-HLC and the noisy input
are plotted as horizontal lines. BSRNN-C-NR-HLC achieves
optimal HASPI and HASQI results for α = 0.7 and α = 0.9,
respectively. This suggests that a balanced combination of NR
and HLC provides optimal speech intelligibility and perceptual
quality for hearing aid users. While BSRNN-C-NR-HLC does
not outperform BSRNN-NR-HLC in terms of HASPI for any α
value, it does so in terms of HASQI for α ∈ [0.7, 0.9].

6. Conclusion
We proposed a novel framework for training a system capable
of controllable joint NR and HLC. This approach eliminates the
need for training auditory model emulators, training for individ-
ual listener profiles, or training for a fixed balance between NR
and HLC. The system demonstrates comparable performance to
specialized systems designed for either NR-only or HLC-only,
as measured by objective metrics. Additionally, the ability to
adjust the balance between NR and HLC enables optimal HASPI
and HASQI results, underscoring its relevance for hearing aid
users. Future work will evaluate the system with listening tests,
investigate the influence of each differentiable auditory model
stage on performance, and investigate the benefit of adjusting α
dynamically based on short-time acoustic features.
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