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Abstract

This paper describes my system for the 3rd Clarity Prediction 
Challenge (CPC3), focused on predicting speech intelligibility 
for hearing aid users.  My approach is based on an intrusive 
neural  regressor  that  leverages  the  power  of  pre-trained 
openai/whisper encoders. For each audio sample, embeddings 
are  extracted  from both  the  processed  signal  and  the  clean 
reference waveform using a frozen Whisper encoder.  These 
embeddings  are  then  aggregated  using  a  custom  Attention 
Pooling layer before being combined with acoustic metadata. 
The  final  prediction  is  generated  by  a  regression  head.  To 
combat  overfitting,  I employed  data  augmentation  and 
carefully tuned regularization parameters such as dropout and 
weight decay. My final submitted system, an arithmetic mean 
ensemble  of  two  separately  trained  models  based  on  the 
whisper-base  and  whisper-medium  backbones,  achieved  a 
final  Root  Mean  Squared  Error  (RMSE)  of  27.82 on  the 
official evaluation set.

1. Introduction

The reliable automatic evaluation of speech intelligibility is a 
critical  component  in  the  development  of  modern  hearing 
enhancement technologies. For hearing aid users, the ability to 
understand speech in noisy environments is a primary measure 
of  a  device's  effectiveness.  The  3rd  Clarity  Prediction 
Challenge  (CPC3)  addresses  this  problem  by  tasking 
participants  with  creating  a  predictive  model  that  estimates 
speech  intelligibility  scores,  defined  as  the  percentage  of 
correctly recognized words by a listener.

This task requires a system to process an audio signal that has 
passed  through  a  hearing  aid  and,  given  listener 
characteristics, predict the resulting intelligibility score. This 
paper details the system I developed for this challenge. My 
approach  is  based  on  an  intrusive  neural  architecture  that 
leverages the powerful feature extraction capabilities of large 
pre-trained  speech  models.  Specifically,  I  use  the 
openai/whisper encoder to generate rich embeddings from the 
audio  waveforms.  These  embeddings,  combined  with 
engineered acoustic features, are then processed by a custom 
regression  head  incorporating  an  attention  mechanism  to 
produce  the  final  score.  In  the  following  sections,  I  will 
describe the system architecture, the experimental setup, and 
the final results achieved on the evaluation set.

2. System Description

My system is an intrusive intelligibility predictor, meaning it 
utilizes both the processed signal and its corresponding clean 
reference. The overall pipeline can be broken down into three 

main  stages:  acoustic  feature  engineering,  neural  feature 
extraction using a Whisper-based model, and a final regression 
head.

2.1. Acoustic Feature Engineering

Before  feeding  the  data  into  the  neural  model,  I  first 
performed  a  feature  engineering  step  to  extract  a  set  of 
descriptive acoustic metadata for each audio sample. As this 
process  can be  computationally  intensive,  it  was  performed 
once  for  the  entire  dataset  and  the  results  were  saved  in 
Parquet files for efficient loading during training.

This process involved loading the audio files with librosa 
and calculating a variety of features, including:

• Signal-to-Noise Ratio (SNR): A classic measure of 
signal quality.

• Spectral Features: Mean spectral contrast, centroid, 
and  bandwidth,  which  describe  the  frequency 
content of the signal.

• Perceptual  Features: The  mean  and  standard 
deviation of 13 Mel-Frequency Cepstral Coefficients 
(MFCCs).

• Energy Features: The Root  Mean Square (RMS) 
energy  of  both  the  processed  signal  and  the 
estimated noise.

These  engineered  features  were  later  concatenated  with  the 
neural embeddings to provide the model with explicit acoustic 
information.

2.2. Model Architecture

The core of my system is a neural regressor built on top of 
a  pre-trained  openai/whisper  encoder.  The  complete 
architecture is shown bellow.

 



Figure [1]. 

The model processes the input waveforms as follows:

1. Whisper Encoder: Both the processed signal  and 
the clean reference signal are independently passed 
through the frozen encoder of a pre-trained Whisper 
model.  This  step  acts  as  a  feature  extractor, 
converting  the  raw  audio  into  high-dimensional 
embedding sequences that capture rich semantic and 
acoustic information.

2. Attention  Pooling: Instead  of  a  simple  mean-
pooling  of  the  embedding  sequence,  which  was 
tested  in  early  experiments,  I  implemented  an 
AttentionPooling layer for each branch (signal and 
reference). This layer calculates a weighted average 
of the embedding sequence, allowing the model to 
dynamically  focus  on  the  most  relevant  temporal 
frames for intelligibility prediction. A dropout rate 
of 0.3 was used for the whisper-base model, and this 
was increased to 0.5 for the larger whisper-medium 
model to provide stronger regularization.

3. Concatenation: The  two  aggregated  embeddings 
(one from the  signal,  one  from the  reference)  are 
concatenated  with  the  pre-calculated  acoustic 
metadata vector described in Section 2.1.

4. Regression Head: This combined vector is fed into 
a final linear layer followed by a Sigmoid activation 
function. The output is scaled by 100 to produce the 
final  intelligibility  score prediction between 0 and 
100.

2.3. Training and Regularization

I trained two primary versions of this model, one using the 
whisper-base encoder and a larger one using whisper-medium. 
The  models  were  trained  using  the  NAdam optimizer.  The 
learning rate was set to 1.0e-4 for the base model, and a more 
aggressive weight_decay of 1.0e-4 was used for the medium 
model to counteract its increased capacity.

To improve generalization and make the model more robust, 
two key regularization strategies were employed:

• Data Augmentation: During training,  I  applied  a 
pipeline  of  augmentations  from  the 
torch_audiomentations  library  exclusively  to  the 
processed  signal  audio.  This  included  techniques 
such as adding colored noise, applying gain, polarity 
inversion,  and frequency-based filtering.  This  step 
proved  to  be  surprisingly  effective  at  reducing 
overfitting.

• Early  Stopping: Training  was  monitored  on  a 
validation set, and early stopping with a patience of 
3-5 epochs was used to save the model with the best 
validation RMSE and prevent further overfitting.

3. Experiments and Results

3.1. Experimental  Setup:  The  system  was  implemented 
using  PyTorch.  All  models  were  trained  on  a  Kaggle 
environment  equipped  with  NVIDIA  GPUs.  The  dataset 
provided by the CPC3 organizers was split into training and 
validation sets using a GroupShuffleSplit strategy. To ensure a 
realistic evaluation of generalization, the data was grouped by 
scene_id,  which  guarantees  that  all  audio  samples  from  a 
given recording scene belong exclusively to either the training 
or the validation set.

The initial training experiments were conducted with a model 
using  the  whisper-base  encoder.  Based  on  its  stable 
performance,  a  larger  model  using  the  whisper-medium 
encoder was subsequently trained with stronger regularization 
parameters to manage its increased capacity.



3.2. Results and Analysis:  The training history for both the 
base and medium models is presented bellow.

Figure 2: Training history for the whisper-base model 
(top) and the whisper-medium model (bottom). The 

plots show the Root Mean Squared Error (RMSE) on 
the training and validation sets, and the learning rate 

schedule over 20-25 epochs.

As shown in Figure 2, both models exhibit a stable training 
progression.  The  validation  loss  closely  tracks  the  training 
loss, indicating that the regularization strategies, particularly 
data  augmentation  and  early  stopping,  were  effective  in 
preventing severe overfitting. The whisper-base model shows 
a slightly smaller gap between training and validation RMSE, 
while the larger whisper-medium model converges to a similar 
validation  performance,  demonstrating  that  its  increased 
complexity  did  not  yield  significant  gains  with  the  current 
training strategy. The learning rate was automatically reduced 
by  a  ReduceLROnPlateau  scheduler  when  the  validation 
RMSE plateaued.

I hypothesize that the performance of the whisper-medium 
model could be further improved by unfreezing the encoder's 
final layers and continuing training with a lower learning rate 
(e.g.,  1e-5).  However,  due  to  the  competition's  time 
constraints and the significant increase in computational cost, 
this hypothesis was not tested.

My final  submission  to  the  challenge  was  an  ensemble 
created by taking the arithmetic mean of the predictions from 
both  the  trained whisper-base  and whisper-medium models. 
This approach leverages the slightly different patterns learned 
by each model to produce a more robust final prediction.

On the official evaluation set, my submitted system (ID E038) 
achieved a final  Root Mean Squared Error (RMSE) of 27.82 
and a  correlation of 0.741. This result is consistent with the 
expected performance drop from the development set, as noted 
by the challenge organizers, due to the increased diversity of 
listeners and systems in the final evaluation data.

4. Conclusions

In this paper, I presented an intrusive neural system for speech 
intelligibility prediction. The approach successfully combined 
the  powerful  feature  extraction  capabilities  of  large,  pre-
trained  Whisper  encoders  with  a  custom,  attention-based 
regression head. Key to the system's stable performance was 

the  implementation  of  strong  regularization  techniques, 
including  aggressive  data  augmentation  and  carefully  tuned 
dropout  and  weight  decay,  which  effectively  controlled 
overfitting.

The  final  ensemble  of  models  based  on  whisper-base  and 
whisper-medium  backbones  demonstrated  a  robust 
performance on the final  evaluation set.  Future  work could 
explore the impact of fine-tuning the full encoder on a larger 
corpus of intelligibility data before adapting it to the final task, 
which may unlock further performance gains from the larger 
model architectures.
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