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Abstract
Computational models that predict the real-world hearing abili-
ties of individuals with hearing loss have the potential to trans-
form hearing aid development. Deep artificial neural networks
trained to perform ecological hearing tasks using simulated
cochlear input reproduce many aspects of normal hearing, but it
is not clear whether such models can also account for impaired
hearing. We used the Clarity Prediction Challenge dataset to
test if a model jointly optimized for everyday sound localiza-
tion and recognition tasks can predict the speech intelligibility
of hearing-impaired listeners. We used the model’s learned fea-
ture representations as an intrusive speech intelligibility met-
ric and measured the effects of simulating individual listeners’
hearing losses in the model’s peripheral input. Individualizing
the hearing loss simulations allowed our model to better pre-
dict speech intelligibility differences across listeners. However,
this benefit was small in the overall human-model correlation,
likely because the explainable variance in the dataset is driven
more by the different hearing aids than by the different listeners.
Index Terms: auditory model, hearing loss, individual differ-
ences, speech intelligibility, perceptual metrics

1. Introduction
Hearing loss is a widespread and growing public health issue,
with 1 in every 10 people projected to have disabling hearing
loss by 2050 [1]. Hearing aids are the main treatment available,
but current devices fail to restore normal hearing, especially in
noisy environments. One factor limiting the development of
more effective devices is our incomplete understanding of how
the peripheral consequences of hearing loss translate to every-
day hearing difficulties [2]. Computational models that directly
relate peripheral auditory processing to real-world perception
could deepen this understanding.

Recent progress towards this aim has been made with deep
learning. Deep artificial neural networks trained to perform eco-
logical hearing tasks using simulated cochlear representations
as input have been shown to account for many aspects of human
auditory behavior [3, 4, 5, 6, 7]. However, these recent models
have only been compared against normal hearing listeners and
cochlear implant users [8, 9] at the group level, and it remains
unclear whether such models can explain the diverse hearing
abilities of individuals with hearing loss. Here, we used the
Clarity Prediction Challenge (CPC) dataset [10] to test whether
a model optimized for everyday hearing tasks can predict the
speech intelligibility of hearing-impaired listeners.

The CPC dataset is a large collection of speech-in-noise sig-
nals processed by different hearing aid systems and presented
to listeners with hearing loss. Each signal contains a short sen-
tence and listeners were asked to repeat the words they heard.
The dataset includes listener response transcripts, ground truth
transcripts, clean reference speech signals, and listener meta-

data (hearing loss severity designation, age, sex, pure tone au-
diogram, digit-triplet test threshold, and subjective question-
naire responses). We used the dataset to investigate the effect
of individualized hearing loss simulation on our model’s speech
intelligibility predictions. In particular, we asked whether sim-
ulating listeners’ audiograms in our model’s periphery leads to
more accurate predictions than simulating only listeners’ coarse
severity designations or simulating no hearing loss.

The results from previous challenges suggest this hypothe-
sis is not trivial. None of the top-ranked systems from CPC1 or
CPC2 incorporated an explicit peripheral auditory model, and
many of the best-performing systems made little or no use of the
listeners’ audiograms [11, 12]. The limited usefulness of audio-
gram information for speech intelligibility prediction is consis-
tent with the possibility that hearing aid amplification compen-
sates for audibility differences across listeners, leaving only the
less well understood suprathreshold effects [13, 14, 15]. How-
ever, the effects of simulating individual audiograms have not
been tested in a model that performs real-world auditory tasks
using cochlear input.

Here, we first trained a model to localize and recognize
speech and other natural sounds using simulated auditory nerve
representations as input. We then simulated hearing loss in
the model’s peripheral input and asked if it could predict the
speech intelligibility of hearing-impaired listeners. We evalu-
ated the model on the CPC3 dataset by leveraging its learned
feature representations as an intrusive speech intelligibility met-
ric [16, 17]. To assess the benefit of modeling listeners’ unique
hearing impairments, we compared model variants with differ-
ent degrees of individualization in the peripheral hearing loss
simulations. The results provide new evidence in favor of indi-
vidualizing computational models of hearing loss and highlight
different ways to evaluate such models on the CPC3 dataset.

2. Methods
2.1. Model architecture

2.1.1. Auditory nerve input representation

All sounds were resampled to 50 kHz and passed through an au-
ditory nerve model to simulate the spiking responses of 32000
nerve fibers per ear. The model consisted of an audibility fil-
ter (shaped like the ISO 226 equal-loudness-level contour at 0
dB), a gammatone filterbank, half-wave rectification, a low-pass
filter, and sigmoid rate-level functions to yield instantaneous
spike rates. Arrays of spike counts sampled from these rates
served as input to an artificial neural network (Fig. 1). The
arrays had shape [6, 50, 20000], representing 3 canonical au-
ditory nerve fiber types (with high, medium, and low sponta-
neous rates [18]) per ear, 50 characteristic frequencies spaced
uniformly on an ERB-number scale [19] from 60 to 16000 Hz,
and 20000 timesteps sampled at 10 kHz.
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Figure 1: Model optimized for ecological auditory tasks

2.1.2. Task-optimized neural network

We used a branching feedforward neural network architecture
to support optimization for multiple tasks. The network’s trunk
consists of 4 convolutional layers followed by 4 conformer [20]
layers. Each convolutional layer comprises a series of oper-
ations: linear 2D convolution, sigmoid linear unit activation
function, average pooling, and layer normalization. Outputs
of the final convolution layer were reshaped from [256 chan-
nels, 12 frequency bins, 295 timesteps] to [256 × 12 = 3072
channels, 295 timesteps] and fed to the first conformer layer.
Each conformer layer has 4 attention heads, a hidden dimen-
sion of 256, and a kernel size of 31. The 3072 channels of
the final conformer layer’s output were split into 4 parallel
branches, each consisting of a 512-unit fully-connected layer
followed by a task-dependent output layer. Network weights
before the branch point are shared between the model’s tasks,
and all weights after the branch point are task-specific.

2.2. Model optimization

The neural network’s 747 million parameters were jointly opti-
mized to perform four auditory classification tasks. The train-
ing dataset consists of 7.6 million 2-second binaural auditory
scenes spatialized with a virtual acoustic head and room sim-
ulator modeling KEMAR’s HRTFs [21] in 2000 acoustically
distinct rooms. Each scene comprises a speech or natural sound
target rendered at a single location with texture-like background
noise rendered diffusely at multiple locations. Speech tar-
gets were sourced from CommonVoice [22], non-speech targets
from GISE-51 [23], and background noises from AudioSet [24].

The model’s tasks were to localize the target (operational-
ized as a 504-way classification task) and make three types
of recognition judgments (809-way word recognition and 500-
way voice recognition tasks for speech targets; 50-way environ-
mental sound classification for non-speech targets). The model
was optimized via stochastic gradient descent to minimize the
summed softmax cross entropy losses from the four classifica-
tion tasks. When a task was undefined for a training example
(e.g., word recognition for a non-speech stimulus), the task was
excluded from the loss. The model trained for 225 hours on 8
NVIDIA A100 GPUs (250,000 steps with a batch size of 256).

2.3. Hearing loss simulation

The model was optimized using normal hearing auditory nerve
input. To model impaired hearing, we froze the trained net-
work’s weights and altered only the auditory nerve input repre-
sentations to fit a given audiogram (Fig. 2).

The auditory nerve model’s rate-level functions were
parametrized with a compression power c ∈ [0.3, 1.0], which
set their absolute thresholds and dynamic ranges (Fig. 2A).
Normal hearing was modeled with c = 0.3 for all frequency
channels, yielding uniform thresholds near 0 dB HL. Audio-
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Figure 2: Rate-level functions and model audiograms

metric hearing losses were modeled by setting c independently
for each frequency channel to produce elevated thresholds and
reduced dynamic ranges. Increasing c reduces the cochlea’s
nonlinear amplification, simulating one consequence of outer
hair cell loss. To couple this loss of amplification with broader
cochlear frequency tuning, the bandwidths of the gammatone
filters were scaled linearly by a factor of 1 to 3 as c increased
from 0.3 to 1.0.

To validate our audiogram fitting procedure, we mea-
sured our model’s audiometric thresholds with linear classifiers
trained to discriminate pure tones from silence using the net-
work’s internal representations. Model-measured audiograms
(solid lines in Fig. 2B) reasonably matched the target audio-
grams (dotted lines).

To measure the effect of simulating individual listeners’
hearing losses, we fit the audiogram of each of the 26 listeners in
the CPC3 dataset, creating a set of models collectively referred
to as the “audiogram-matched” model. This model was com-
pared against a “severity-matched” model (with each listener
assigned one of the reference audiograms in Fig. 2B according
to their severity designation) and a “normal hearing only” model
(with all listeners assigned the normal hearing audiogram).

2.4. Intrusive speech intelligibility metric

We developed a correlation-based intrusive speech intelligibil-
ity metric using our network’s learned deep feature represen-
tations [16, 17]. Activations from hearing-impaired models in
response to hearing aid output signals were linearly correlated
with the corresponding activations from a normal hearing model
in response to the clean speech reference signals. Because our
model operates on fixed-length inputs, hearing aid outputs and
reference signals were subdivided into 2-second 90% overlap-
ping frames and correlations were averaged across all frames.

2.5. Clarity Prediction Challenge compliance

As we were primarily interested in modeling individual listen-
ers’ hearing losses, our models do not all adhere to the CPC3
rules against using listener data from prior challenges. The
“audiogram-matched” models incorporate listener audiograms
released with the CPC1 dataset. For our contest submission, we
used only the challenge-compliant “severity-matched” model.
To maximize the performance of our submitted system, intelli-
gibility predictions on the CPC3 evaluation dataset were passed
through a logistic function whose parameters minimized the
root mean squared error between predicted and measured in-
telligibility scores on the CPC3 training dataset.

This fitting step was not included in the analyses reported
here, which treated the entire CPC3 training dataset as an evalu-
ation dataset. Here, all model parameters were optimized solely



for performance on the ecological training tasks. Model predic-
tions were not fit in any way to the CPC3 human intelligibil-
ity scores. Any similarity to human behavior is thus a conse-
quence of optimizing the model for its training tasks given the
constraints of the simulated auditory nerve input and the neural
network architecture [6].

3. Results
3.1. Layer-wise speech intelligibility predictions

To determine which model stage best predicts human speech
intelligibility, we evaluated our intrusive metric on the CPC3
training dataset, using activations from each of the model layers
one at a time (Fig. 3). We measured the linear correlation be-
tween model intelligibility predictions and human intelligibility
scores across all scenes, listeners, and hearing aid systems. The
correlations generally increased deeper into the network, with
the highest correlations obtained in the model’s word recog-
nition branch. This result indicates the network features most
optimized for word recognition are also the most predictive of
human speech recognition. Subsequent analyses used the word
recognition branch’s fc0 activations (red circle, Fig. 3).

Figure 3: Speech intelligibility correlations of each model stage

3.2. Overall effect of individualized hearing loss simulation

To test whether simulating individual listeners’ hearing losses
improves speech intelligibility predictions, we compared
the overall human-model correlations from our “audiogram-
matched”, “severity-matched”, and “normal hearing only” mod-
els (Table 1). The correlations were all similar, showing little
benefit of hearing loss simulation when evaluated across the en-
tire CPC3 training dataset. Our three models outperformed cor-
responding Hearing-Aid Speech Perception Index (HASPIv2)
baselines [25], which used the same audiograms and were com-
puted from the better ear in each scene. The HASPIv2 baselines
showed no benefit of hearing loss simulation.

Table 1: Overall correlations between human and model speech
intelligibility scores with different hearing loss simulations

System Audiogram-
matched

Severity-
matched

Normal
hearing only

Proposed model 0.769 0.768 0.758
HASPIv2 baseline 0.671 0.684 0.690

3.3. Analysis of hearing aid vs. listener-driven variance

Correlations between human and model speech intelligibility
scores across all 15520 scenes in the CPC3 training dataset

quantify how well a model can jointly explain all sources of
variance: the different scenes, the different hearing aid systems,
and the different listeners’ hearing losses. To marginalize out
the variance due to scenes and compute the split-half reliabil-
ity of the human speech intelligibility scores, we grouped the
scenes by hearing aid system and listener, and averaged intel-
ligibility scores across scenes within the same group. Human-
model correlations across these scene-averaged scores quantify
how well a model explains the combined variance due to hear-
ing aids and listeners (Fig. 4A). To measure a model’s ability
to explain only the hearing aid-driven variance, we separately
correlated the scene-averaged human and model scores for each
of the 26 listeners and then averaged the correlations (Fig. 4B).
To measure a model’s ability to explain only the listener-driven
variance, we separately correlated the scene-averaged human
and model scores for each of the 18 hearing aid systems and
then averaged the correlations (Fig. 4C).

When analyzed this way, we observe a significant bene-
fit to individualizing the hearing loss simulation in our model
(F (1.323, 22.494) = 12.444, p = 0.001, η2

partial = 0.069,
repeated-measures ANOVA with Greenhouse-Geisser correc-
tion). The “audiogram-matched” model explains more of
the explainable listener-driven variance (44.1%) than either
the “severity-matched” model (35.0%) or the “normal hear-
ing only” model (20.0%). The effect of individualizing the
hearing loss simulation in the HASPIv2 baseline system was
not statistically significant (F (2, 34) = 0.348, p = 0.709,
η2
partial = 0.007).

Figure 4: Correlations between scene-averaged human and
model speech intelligibility scores, grouped by listener and/or
hearing aid system

3.4. Non-intrusive word recognition predictions

So far, we have only considered the model’s predictions when
using its internal representations as an intrusive speech intel-
ligibility metric. Because our model was explicitly trained to
recognize words in noise, it is also possible to test whether the
model can predict listeners’ speech recognition performance us-
ing only the noisy, hearing aid-processed CPC3 signals (without
using the clean speech reference signals, which listeners did not
have access to). However, since the model was optimized for a
closed-set word recognition task with an 809 word vocabulary,
evaluating it on the full CPC3 dataset is not possible.

Only 376 of the 1779 unique English words in the CPC3
dataset overlapped with our model’s vocabulary, representing
just 16.8% of the total words spoken in the dataset. We mea-
sured our model’s word recognition performance on this subset
by evaluating it on 2-second audio excerpts centered on each
of the 21549 in-vocabulary words. Human word recognition
judgments for the same excerpts were inferred from the listen-



ers’ response transcripts. A word was judged to be correctly
recognized by a listener if it appeared in the listener’s response
transcript for the scene from which the word was excerpted.

We compared human and model word recognition perfor-
mance averaged across all words from the same listener and
hearing aid system (Fig. 5A). Despite limiting analyses to
a fraction of the dataset, the split-half reliability of the in-
vocabulary human word recognition judgments (0.958) was
comparable to the split-half reliability of the scene-averaged
human intelligibility scores from the full dataset (0.969). We
repeated the analyses performed on the full dataset, measuring
the hearing aid and listener-driven variance explained by the
“audiogram-matched”, “severity-matched”, and “normal hear-
ing only” models (Fig. 5B). The results were qualitatively con-
sistent with those from the intrusive speech intelligibility met-
ric. The model’s word recognition performance was highly
correlated with human listeners’ word recognition performance
(r = 0.878), and there was a small benefit to individualized
hearing loss simulation. This benefit was again most evident
when marginalizing out variance due to the hearing aid sys-
tems. The “audiogram-matched” model exhibits near human-
level word recognition on the CPC3 dataset and accounts for
34.4% of the explainable variance across individual listeners.
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Figure 5: Correlations between human and model word recog-
nition performance, evaluated only on the words in the model’s
closed-set vocabulary

4. Discussion
We developed an intrusive speech intelligibility metric that
leverages the learned feature representations of a neural net-
work optimized to perform everyday hearing tasks using sim-
ulated auditory nerve input. While conceptually similar to pre-
vious Clarity Prediction Challenge systems that leverage pre-
trained large acoustic models [12], our system primarily differs
due to the inclusion of a hard-coded auditory nerve model input
stage, which enabled explicit simulation of hearing-impaired
peripheral processing. We used our model to ask whether sim-
ulating an individual’s hearing loss (by fitting the peripheral
model to their audiogram or to their severity designation) im-
proves the accuracy of speech intelligibility predictions.

For both our model and HASPIv2, the effect of simulat-
ing individual hearing losses on the overall human-model cor-
relation across the CPC3 training dataset was small. However,
marginalizing out the variance in the dataset due to the different
scenes and hearing aid systems revealed a considerable bene-
fit to individualizing the hearing loss simulation in our model.
When our model’s periphery was matched to individual listen-
ers’ audiograms, our model accounted for 44.1% of the explain-
able variance across individual listeners, a meaningful improve-
ment upon the 20.0% explained by our model with no hearing

loss simulation and the 14.6% explained by HASPIv2.
In absolute terms, the explained variance across listeners is

still low. This could reflect our relatively crude simulation of
peripheral hearing loss, which effectively assumed only outer
hair cell loss. More accurate simulations of the cochlea [26]
and more principled audiogram fitting procedures [27] could
be incorporated in future work. Our hearing loss simulation
also neglected auditory nerve fiber loss which is unlikely to be
reflected in the audiogram but may impair speech perception
[28]. Since our network’s parameters were optimized solely for
normal hearing input, we also neglected any possible effects of
brain plasticity [29], which could also contribute to differences
across individual listeners.

Whether the explained variance across listeners is an impor-
tant metric for improving hearing aid development is an open
question. Because the hearing aid-driven variance is consider-
ably more reliable than the listener-driven variance in the CPC3
training dataset (split-half reliability of 0.968 vs. 0.735), we
suspect the performance of submitted systems is primarily a
function of their ability to account for the hearing aid-driven
variance. Consistent with this idea, two of the top-performing
systems from CPC2 [30, 31] made no use of listener audiogram
information. From a hearing aid development perspective, it
is sensible to evaluate models on their ability to jointly account
for all sources of variance. However, to better understand the di-
versity of outcomes in people with hearing loss, future models,
datasets, and challenges might consider prioritizing the variance
across listeners, which is potentially harder to explain.

5. Conclusions
A deep artificial neural network trained to perform everyday
hearing tasks using simulated auditory nerve input can better
predict hearing-impaired speech perception than HASPIv2. The
model’s intelligibility predictions also benefit from explicitly
simulating individual listeners’ hearing losses, but this benefit is
primarily evident after marginalizing out more reliable sources
of variance in the CPC3 training dataset. Our results suggest
that the overall human-model correlation score on this dataset
is not a particularly sensitive measure for evaluating models of
hearing loss.
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