
Word-level intelligibility model for the third Clarity Prediction Challenge 

Mark Huckvale 

Speech, Hearing and Phonetic Sciences, University College London, UK 

m.huckvale@ucl.ac.uk 
 

Abstract 

This paper presents a speech intelligibility model for the third 

Clarity Prediction challenge based on an analysis of word-

level intelligibility in the training dataset. Using the given test 

prompts, a word-level alignment was performed on the 

reference audio, and this was then used to extract information 

from the test audio, including word-level measures of acoustic 

and phonetic distortion. Lexical properties of the words were 

also obtained using other language resources, including phone 

count, syllable count, word frequency, trigram frequency and 

number of lexical neighbours. We present an analysis showing 

how the intelligibility of individual words relates to these 

properties and build a classification model that predicts word 

intelligibility. We show that sentence level intelligibility 

predictions derived from a word-level intelligibility prediction 

model gives better performance than a model based on whole 

sentences. 

Index Terms: speech intelligibility model 

1. Introduction 

The third Clarity Prediction Challenge [1, 2] was an open 

competition to compare the performance of speech 

intelligibility metrics on a common dataset. The materials for 

the prediction challenge were generated from previous 

enhancement challenges in which teams competed to process 

noisy speech for known hearing-impaired (HI) listeners. The 

goal of the prediction challenge was to predict the 

intelligibility of some held-out enhanced sentences by these 

listeners. 

The work presented in this paper builds on the success of 

our systems entered for the first two prediction challenges 

[3,4]. In this submission we continue to use the STOI metric to 

create a measure of acoustic similarity between the test 

sentence and a clean reference, a phonetic recogniser to create 

measures of phonetic similarity, and a language model for 

estimating word sequence probability. The main innovation in 

this work is a focus on the intelligibility of individual words in 

the test sentences, which allows us to explore how word 

intelligibility is related to lexical properties of the word, such 

as phoneme count, syllable count, size of lexical 

neighbourhood, and position of word in the sentence. Using a 

model of word intelligibility based on these features we then 

predict sentence intelligibility to generate predictions for the 

challenge. 

Section 2 describes the data and the methods used to 

extract the word features. Section 3 investigates the utility of 

the different features in predicting word intelligibility. Section 

4 presents the accuracy of word-level and sentence level 

intelligibility predictions on the training and development data 

sets. 

2. Data and Methods 

2.1. Challenge data set 

The challenge training data comprises 15520 different 

sentence intelligibility measurements collected from 26 

different hearing-impaired listeners (9 Mild, 13 Moderate, 4 

Moderately severe). 1047 different sentences were used (338 

of length 7 words, 293 of length 8, 224 of length 9 and 192 of 

length 10). In these sentences there were 1781 different words. 

In total there were 128603 word intelligibility measurements, 

with 63.16% correctly identified. 

2.2. Word segmentation 

To extract word-level features from the supplied signals, we 

first compute a phonetic posteriorgram from the test and 

reference audio. This uses the phonetic recogniser described in 

[4] which is now openly available [5]. Using dictionary 

pronunciations of the words in the sentences, we then perform 

a dynamic-programming alignment between sentence 

transcription and posteriorgram to locate the start and end of 

each word in the reference signal. These word segmentations 

are then used to derive acoustic and phonetic distortion 

measures for each word in each sentence.  

2.3. Signal features 

The following features were extracted from the word-

segmented signals and posteriorgrams: 

STOI: The STOI metric [6] correlates the test and reference 

audio in 15 frequency bands and measures the degree of 

acoustic distortion present in the test signal compared to the 

reference. The target and processed signals are first aligned by 

spectral cross-correlation [7] before calculation of the STOI 

correlations separately for each ear and each word. The STOI 

value from the better ear is used in prediction. 

Phonetic RMSE: This is a measure of the phonetic distortion 

present in the test signal compared to the reference. The phone 

posteriorgram is first reduced to 15 dimensions representing 

Voice, Place and Manner features (see [4]), and the RMS 

difference between the VPM features in the test compared to 

the reference is computed for each word. 

Phonetic correlation: This is an alternative measure of 

phonetic distortion, computed in the same manner as for 

Phonetic RMSE, but using the correlation between the VPM 

features rather than the RMS difference. 

2.4. Word features 

The following features are calculated from dictionary and 

corpus properties of each word, independently from the audio. 

#Words in sentence: the number of words in the prompt 

sentence containing this word. 



Word position in sentence: the relative position of the word 

in the prompt sentence, expressed as a number between 0 and 

1. 

Phoneme count: the number of phonemes in the word’s 

dictionary pronunciation 

Syllable count: the number of syllables in the word’s 

dictionary pronunciation 

Neighbourhood size: the size of the lexical neighbourhood of 

the word [8]. This is computed by searching a pronunciation 

dictionary for all words which are one phoneme edit distance 

away from the word 

Word frequency: the frequency of the word in the BNC 

corpus. 

Trigram frequency: the frequency of the trigram made up 

from this word, the previous word and the following word in 

the BNC corpus. 

3. Word intelligibility analysis 

The relationships between each feature and the probability of 

the word being recognised correctly is shown in Table 1. The 

bootstrapped mutual information metric was calculated using 

the MPMI toolbox [9]. 

Table 1. Relationship between word-level features and 

word intelligibility in the training data 

Feature Correlation Mutual 

Information 

Neighbourhood size -0.049 0.165 

Audio STOI 0.525 0.163 

Phonetic RMSE -0.435 0.111 

Phonetic correlation 0.369 0.107 

Word frequency 0.161 0.060 

Phoneme count 0.041 0.027 

Trigram frequency 0.144 0.021 

Syllable count 0.041 0.015 

Word position in sentence -0.057 0.001 

# Words in sentence -0.053 <0.001 

 

The analysis shows that intelligibility increases with higher 

word frequency, higher trigram frequency, higher phoneme 

count, and higher syllable count, and reduces with increasing 

neighbourhood size, later word position, and number of words 

in sentence. For most words, neighbourhood size has little 

effect in these data, except for a small number of short words 

with large neighbourhoods, such as “pose”, “says”, “low”, 

“raid” and “sigh”, which are particularly poorly recognised. 

4. Intelligibility models 

4.1. Word intelligibility prediction 

We use the features in Table 1 to build a model to make a 

binary prediction of whether the word would be recognised 

correctly. We use a Random Forest classifier, with 200 trees 

and a minimum leaf count of 5. To encourage generalisation, 

we first oversample the training data by synthesizing a further 

128000 samples by linear interpolation using random mixing 

factors. Cross-validated accuracy and ROC area-under-curve 

on the training data are shown in Table 2. 

Since there is considerable mutual information between 

the intelligibility of adjacent words in each sentence, we also 

trained the random forest classifier on a concatenation of three 

word-vectors representing the word and its immediate 

neighbours in the sentence. This slightly improves 

classification accuracy. 

Table 2. Word intelligibility classifier accuracy 

Feature vector Accuracy Area-under-curve 

Single word 79.2% 0.851 

Word in context 81.0% 0.869 

4.2. Sentence intelligibility prediction 

To compute sentence intelligibility, we use the random forest 

classifier to deliver a probability for each word to be correctly 

recognised and take the mean logit-transformed value. We 

then combine this with the hearing impairment severity for the 

listener in a logistic regression using a linear model. The 

performance of the sentence intelligibility prediction on the 

development data and cross-validated on the training data is 

given in Table 3. For reference, we include figures for a 

logistic regression model based on the acoustic and phonetic 

features calculated over the whole sentence, which is similar 

to the system in [4]. Results show that the model based on the 

word-level features has better performance, and that adding 

hearing severity information slightly improves results. 

Table 3. Sentence intelligibility prediction 

performance on the challenge data sets 

Model Training set Development set 

 Corr RMSE Corr RMSE 

Sentence only 0.749 26.404 0.764 26.491 

Sentence and Severity 0.755 26.110 0.781 25.669 

Word only 0.776 25.241 0.784 25.446 

Word and Severity 0.782 24.798 0.799 24.638 

5. Conclusions 

In this paper, we have investigated factors affecting the 

intelligibility of individual words in the challenge data set. We 

have shown that we can build a successful model that predicts 

word intelligibility by combining acoustic and phonetic 

distortion measures computed over word regions in the signals 

with lexical features of the words themselves, like their 

frequency and the size of their lexical neighbourhood. We 

have shown that basing a sentence intelligibility prediction 

model from the word intelligibility predictions gives an 

improved accuracy of prediction over treating the sentence as 

a whole. Better modelling of the mutual intelligibility between 

words within a sentence is an opportunity for further work. 

An interesting outcome of the word-level intelligibility 

analysis is the particular problems for intelligibility arising 

from short, relatively-infrequent words with large lexical 

neighbourhoods, probably because they can be readily 

confused with words with greater frequency. 

Scripts to recreate the results presented in this paper will 

be made available on-line [10]. 
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