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Abstract

Sentence-level speech intelligibility predictors have plateaued
with RMSEs above 20 on CPC2 [1l]. Without a clean refer-
ence, it is hard to indicate when and what words or phonemes
fail for hearing-impaired listeners. We hypothesize that model-
ing the deviation between a noisy utterance and its clean coun-
terpart can reveal the spans that break comprehension and im-
prove overall prediction. We participate in the Clarity Predic-
tion Challenge 3 (CPC3) and ask whether incorporating clean
reference signals can improve sentence-level intelligibility pre-
diction for hearing-impaired listeners.

Index Terms:intrusive speech intelligibility assessment, multi-
scale CNN,SFM layer selection

1. Introduction

Progress in this task hinges on two decisions. First, we must
choose a feature extractor that captures the cues most predictive
of intelligibility—whether mid-depth SSL/SFM representations
or multi-scale CNN time—frequency features [2]]. Second, we
need a predictor that can exploit these cues effectively, translat-
ing them into accurate sentence-level scores by modeling how
deviations in the noisy signal (relative to the clean reference,
when available) lead hearing-impaired listeners to miss specific
words or phonemes.

Automatic speech recognition (ASR) encoders offer rich,
linguistically informed representations for speech intelligibility
prediction, since they effectively transform acoustic waveforms
into text-level features. Prior work suggests that intermediate
hidden layers—rather than the input or final layers—often yield
the most discriminative features for downstream tasks [3]]. Mo-
tivated by these findings, we first seek to identify the best inter-
mediate layers of an ASR encoder for intelligibility assessment
and then investigate how incorporating clean reference signals
can further improve prediction accuracy.

We select top-ranked encoder(s) and ensemble their mid-
depth representations with a multi-scale CNN (MSCNN) front
end, yielding a compact and accurate intelligibility predictor.

2. Model

As shown in Fig.1, each model operates on a log-Mel spectro-
gram of shape [B, T, Nmels| With Niels = 128. We first apply
a three-branch 1-D temporal convolutional front end:

¢ Branch F: Conv1D (Nmes — H, k = 3, dilation =
1, padding = 1)
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* Branch M: Conv1D (Nmes — H, k = 5, dilation =
2, padding = 4)

* Branch C: Conv1D(Nmeis — H, k =9, dilation =
4, padding = 16)

The three H-channel outputs are concatenated and projected
to a D-dimensional embedding, yielding per-frame features of
size [B, T, D].

We then extract the most informative intermediate lay-
ers from our pretrained encoders and process each layer with
a CrossAttentionBlock, where every block includes a
residual connection and LayerNorm. The SSL features are sub-
sequently down-sampled by a factor of 8, yielding a tensor of
shape [B, T'/8, D].

Next, the left-ear, right-ear, and reference sequences all
go through a Temporal Transformer to model long-range de-
pendencies.  After this, each ear performs a frame-level
cross-attention against the reference: so that any distortion or
missing cues in the noisy signal at time ¢ can be corrected by
the clean reference. We then apply mean pooling over time to
obtain a single D-dimensional vector per layer per stream.

Finally, we stack the per-layer vectors for each stream
(plus a severity embedding) and feed them into a Layer
Transformer. This is followed by layer-level reference align-
ment via cross-attention block, and layer-level ear fusion via
cross-attention block. which integrates multi-scale information
and merges the complementary strengths of the two ears. Each
ear’s final token is passed through a lightweight MLP with a
sigmoid activation to produce a score; the higher of the two ear
scores is selected as the overall intelligibility prediction.

3. Experimental setup

We reuse the same predictor as in Fig.1 and vary only which
encoder layers feed it. For each model, we sweep contiguous,
fixed-size layer windows across depth (e.g., 0-3,4-7, ...), train
on the fixed train split, evaluate validation RMSE, and pick the
window with the lowest RMSE as the “best layers.” The se-
lected window per model is used in all subsequent experiments.
Layers used in fusion. We take layers 10-17 (inclusive) from
both SFMs (Canary-1B-Flash and Parakeet-TDT-0.6B-V2).
Optimization. AdamW (Ir 3x107°, weight decay 10™2),
batch size 8, 9 epochs.

Five folds and evaluation. In each fold, the validation set con-
tains exactly two listeners per severity class (Mild, Moderate,
Moderately severe)—six validation listeners in total—while
the remaining listeners form the training split. We create 5
listener-disjoint folds (fixed validation listeners per fold). For
each fold we train to the best validation RMSE and keep that
checkpoint. At test time, we predict the dev and evaluation
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Figure 1: Model overview. (a) Shared per-stream encoder for left, right, and reference signals. (b) Fusion stage: each ear attends to

the reference (L—Ref, R—Ref) and to the other ear (L<>R). Panels (a)
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Figure 2: Validation RMSE by encoder layer window.

sets with all five checkpoints and average the five fold scores to
obtain the final submission.

Compute and runtime. All experiments were run on Google
Colab with a single NVIDIA L4 GPU (10 GB GPU RAM) and
30 GB host RAM.

4. Results and Analysis

Starting from a single—ear setup (left/right averaged) we
obtain an RMSE of 25.00. Modeling the two ears ex-
plicitly with cross—ear attention lowers RMSE to 23.60.
Adding reference—guided cross—attention yields a small fur-
ther gain to 23.40. Replacing Canary-1B with the Canary-
1B-Flash+Parakeet-TDT-0.6B-V2 ensemble improves RMSE to
22.40, and adding MSCNN features brings the final score to
22.36.

Replacing the  temporal/layer  transformers with
Conexibimamba (a Conformer variant where multi-head
self-attention is replaced by Mamba-style blocks) did not help
[4], likely because the SSL encoders already provide strong
sequence representations. The reference signal provides a

+ (b) form the full model.

Table 1: Ablation on the dev set (RMSE ).

Configuration RMSE
Single ear (L +R averaged), no cross-attn 25.00
+ Dual-ear with cross-ear attention 23.60
+ Reference cross-attention 23.40
+ Swap to Canary-1B-Flash & add Parakeet  22.40
+ Add MSCNN features 22.36

modest dev-set gain (23.60—23.40); future work will evaluate
whether it improves robustness on unseen data. Overall, the
full model reduces RMSE from the baseline 28.00 (Table 2?)
to 22.36 (~20% relative).

5. Conclusions

We presented a reference—aware intelligibility predictor
that selects the most informative mid—depth layers from
two speech foundation models (Canary-1B-Flash and
Parakeet-TDT-0.6B-V2; layers 10-17), fuses them with a
multi-scale CNN front end, and employs cross-reference and
cross-ear attention at both temporal and layer levels with a
severity token. Experiment showed no gains from replacing
transformers with Mamba-style blocks or from score-level
fusion.

With the clean reference signal available, we will further
exploit TextGrid alignments to move beyond sentence-level
scores and attempt true word-level intelligibility prediction.
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