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Abstract 

This report proposes a non-intrusive speech intelligibility 

prediction model named Objective Sound Quality Analysis for 

Speech Intelligibility (OSQA-SI). The model adopts a simple 

sequential architecture, trained with a minimal number of 

parameters, and its performance is compared across two types 

of input acoustic features. Due to its extremely low parameter 

count, the model is suitable for real-time speech intelligibility 

assessment in real-world environments on mobile devices. 

Index Terms: speech clarity, speech intelligibility, non-

intrusive, hearing aid, hearing loss 

1. Introduction 

For individuals with hearing loss, the clarity of sound or the 

perception of semantic understanding is of paramount 

importance when using hearing assistance devices. Evaluating 

the intelligibility of various algorithms and subsequently 

adjusting them based on these evaluations has become a 

common optimization approach in modern development. 

Analysis methods for measuring intelligibility, such as the 

Short-Time Objective Intelligibility (STOI) [1] and the 

Modified Binaural STOI (MBSTOI) [2], have effectively aided 

product technology development by assessing speech clarity. 

From a user perspective, individuals with hearing loss are 

particularly sensitive to these speech intelligibility issues. To 

accurately assess speech intelligibility while accounting for 

individual hearing levels, the Hearing-Aids Speech Perception 

Index (HASPI) [3] comprehensively considers the impact of 

hearing loss curves and inner ear hair cell damage on speech 

clarity. 

However, the aforementioned analysis metrics are all based 

on Intrusive Analysis. They obtain corresponding intelligibility 

scores by comparing the processed signal with an ideal 

reference signal. While accurate, this method is challenging to 

apply in real-world user scenarios. Non-Intrusive Analysis 

methods don’t require comparison with an ideal reference 

signal during analysis. Instead, they map the characteristics of 

the analyzed signal itself to a corresponding evaluation score, 

making them highly suitable for real-world testing. Most non-

intrusive analysis systems are implemented through deep 

learning models, which learn to capture features that influence 

changes in speech clarity. 

This report proposes a lightweight model designed for real-

time speech intelligibility assessment on mobile devices. We 

also compare the model's correlation with subjective scores and 

its error when using two different acoustic features as input. 

  

2. Model 

The OSQA-SI model is primarily divided into three main 

components: Hearing Loss Simulation, Acoustic Feature 

Extraction, and Scoring Model. 

2.1. Hearing Loss Simulator 

We utilize the officially provided MSBG (Moore, Stone, 

Baer and Glasberg) hearing loss simulator [4-7] to preprocess 

the binaural hearing aid recordings. This processing references 

the listener's audiogram (e.g., mild, moderate, moderate-severe 

hearing loss) to simulate the perceived signal for that listener. 

The processed signal is then subjected to acoustic feature 

extraction. 

2.2. Acoustic Features 

We compared the model's performance using two types of 

input features: Mel-spectrograms and vocoder features derived 

from the WORLD [8] vocoder. Vocoder features have 

historically been used in text-to-speech or speech-to-text tasks 

as a converter between speech and acoustic characteristics. 

Input signals were uniformly resampled to a 48 kHz sampling 

rate, and acoustic features were extracted with a 5 ms hop size. 

Mel-spectrograms were extracted with 48 dimensions, while 

vocoder features were extracted with 63 dimensions, 

comprising 60 Mel-generalized cepstral (MGC) coefficients, 

log fundamental frequency (lf0), band aperiodicity (bap), and 

voiced/unvoiced (vuv). Both sets of binaural acoustic features 

were then fed into the scoring model for speech intelligibility 

score prediction. 

2.3. Scoring Model Structure 

The framework of the scoring model is illustrated in Figure 

1. The model adopts a Sequential Model framework, which 

includes a Temporal Processing Model and a Score Mapping 

Model. The feature-transformed binaural signal features are 

first analyzed by the Temporal Processing Model, then passed 

through the Score Mapping Model to generate individual scores 

for each ear. Finally, the higher score between the two ears is 

selected as the predicted binaural score output. 

The Temporal Processing Model comprises two sub-

models: Bi-directional Long Short-Term Memory (Bi-LSTM) 

and Self-Attention. Bi-LSTM is used for hidden feature 

transformation and dimensionality reduction of temporal 

forward and backward information. Self-Attention then focuses 

on salient features across the entire signal to extract critical 

information from the input binaural signals. The Score Mapping 

Model includes Attention-Pooling, Max-Pooling, and a 

Regression Model. Attention-Pooling assigns different weights 

to various temporal features and outputs the corresponding 



predicted scores. Max-Pooling then outputs the score from the 

better ear. Finally, a Regression Model maps this score to the 

subjective intelligibility scale. 

Figure 1: Schematic diagram of speech production. 

2.4. Training Score 

Since subjective scores are derived from the overall 

binaural perception, to ensure the reliability of model training, 

we calculated HASPI scores for each ear's audio separately. The 

score from the better ear was used as the subjective ground truth, 

while the other ear was assigned a score proportionally. During 

training, the model was iteratively trained on single-ear signals. 

In the prediction phase, Max-Pooling was applied to select the 

score from the better ear as the final output. 

2.5. Training Setup 

Mean Squared Error (MSE) was used as the loss function 

during training. The Adam optimizer was employed with a 

learning rate of 10−6 for iterative training. 

3. Result 

We compared two OSQA-SI models, each trained with a 

different acoustic feature set. Their root mean squared error 

(RMSE) and correlation coefficients (PCC) during training and 

development are shown in the table below. The model trained 

with vocoder features consistently outperformed the one trained 

with Mel-spectrograms across all metrics. 

Table 1: OSQA-SI training and develop performance result. 

Input 

Type 

Model 

Param 

Train 

RMSE 

Train 

PCC 

Dev 

RMSE 

Dev 

PCC 

Vocoder  55.6k 29.1 0.70 31.1 0.66 

Mel-Spec 53.1k 34.3 0.65 33.1 0.65 

 

4. Limitation and Future Work 

Our proposed model is limited by its framework design, as 

it does not explicitly account for binaural interaction, making it 

challenging to accurately predict scores based on complex 

inter-aural characteristics. Furthermore, while Attention-

Pooling provides time-weighted pooling for the overall signal, 

it cannot estimate the inherent vocabulary size or the duration 

of pronunciations within the input signal. We aim to address 

these issues in our future model designs. Given the model's 

remarkably low parameter count, we will also explore its 

deployment on edge computing devices such as mobile phones, 

to facilitate more convenient real-world measurements. 
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