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Abstract

Speech intelligibility prediction for individuals with hear-
ing loss is paramount for advancing hearing aid technology.
Leveraging recent breakthroughs in ASR foundation models,
particularly Whisper, we fine-tuned a Whisper model for speech
intelligibility prediction. Our approach incorporates data aug-
mentation using impulse responses from diverse everyday en-
vironments. This study investigates the effective integration of
linguistic and acoustic cues to enhance the prediction of fine-
tune ASR models, aiming to compensate for both hearing loss
and information loss during signal downsampling. Our goal is
to improve speech intelligibility prediction, especially in noisy
conditions. Experiments demonstrate that integrating these cues
is beneficial. Furthermore, employing a weighted average en-
semble model, which balances predictions from left and right
audio channels and considers both stable and unstable linguis-
tic and acoustic cues, significantly improved prediction perfor-
mance, reducing the RMSE by approximately 2 and enhancing
the Pearson correlation coefficient (ρ) by around 0.05.
Index Terms: speech intelligibility, hearing loss, ASR

1. Introduction
Accurate speech intelligibility prediction for individuals with
hearing loss is vital for developing improved hearing aids, as
current models frequently lack robustness, especially in noisy
environments. Recent advances in automatic speech recogni-
tion (ASR), particularly with foundation models such as Whis-
per [1], Wav2vec2 [2], and WavLM [3], offer promising re-
sults in any speech processing tasks. Wav2vec2 excels in self-
supervised representation learning in low-resource and transfer
learning scenarios, WavLM provides robust speech representa-
tions and enhanced paralinguistic feature extraction (e.g., tone,
emotion), and Whisper demonstrates strong performance, par-
ticularly in content-driven tasks and noisy conditions [4].

However, these foundation models are typically trained on
16-kHz signals and optimized for clean audio. Applying them
to hearing loss scenarios, which often involve higher-fidelity
signals, can lead to a significant loss of crucial acoustic and lin-
guistic information during downsampling. This missing data,
especially at higher frequencies, can severely compromise the
accuracy of intelligibility predictions for impaired listeners.

In this study, we investigate how perception of linguistic
and acoustic cues in hearing loss can be effectively integrated
into improve these speech foundation models. Our goal is
to compensate for both hearing loss and information lost dur-
ing signal downsampling, thereby improving the prediction of
speech intelligibility in noisy environments.

Figure 1: Architecture of the Fine-tuned Whisper Model for
Speech Intelligibility Prediction. SPIN is speech in noise.

Figure 2: Integration Model with Linguistic and Acoustic Cues.

2. Model Architecture
2.1. Fine-tuned ASR Model

Figure 1 illustrates the architecture of our fine-tuned Whisper
model. We specifically selected the small.en variant, which
is pre-trained on an English-only dataset, owing to its favorable
performance-to-parameter ratio. Our proposed model’s archi-
tecture consists of three primary components: the Whisper En-
coder, an Attention Pooling Layer, and a Regression Head.

To enhance the robustness of our model across diverse
acoustic environments, we incorporated an augmentation layer
during training. This layer generates augmented data by con-
volving the audio with randomly selected impulse responses ob-
tained from The MIT McDermott dataset [5], which comprises
271 impulse responses recorded in various everyday locations.
We generated 20% augmented data from our existing training
set, aiming to expose the model to a wider range of environ-
mental conditions beyond those inherently present in the origi-
nal dataset. For training our regression model, we employed a
hybrid loss function that combined MSE and Pearson correla-
tion loss (referred to as MSE-PearsonLoss).



Table 1: Overall Speech Intelligibility Prediction Results: Comparison of Models, Linguistic and Acoustic Cues Integration, and
Ensemble (Ens.) Methods.

Linguistic Cues* Acoustic Cues** Validation DevelopmentNI Model Integration Ens. MER BoP DC F0 Jit Shim Loud Timb MOS RMSE ρ RMSE ρ
be-HASPI No No - - - - - – - - - 29.327 0.662 28.000 0.720No HASPI Yes Yes v v v v v v v v v 22.275 0.822

FT-Whisper Yes No - v v - - - - - v 24.834 0.779Yes FT-Whisper Yes Yes - v v - - - v v v 24.819 0.779
FT-Whisper Yes No v v v v v v - - v 22.340 0.816 26.243 0.771No FT-Whisper Yes Yes v v v v v v v v v 21.862 0.829 24.809 0.797

STM-CNN-SE No No - - - - - - - - - 24.712 0.775 24.860 0.786
STM-CNN-SE Yes No v v v v v v - - v 22.510 0.814 23.432 0.813No
STM-CNN-SE Yes Yes v v v v v v v v v 22.474 0.819 23.152 0.818

STM-CNN-ECA No No - - - - - - - - - 24.156 0.787 24.460 0.794
STM-CNN-ECA Yes No v v v v v v - - v 22.397 0.820 24.099 0.800No
STM-CNN-ECA Yes Yes v v v v v v v v v 22.317 0.822 23.466 0.812

* MER: match error rate (Whisper (medium.en), WavLM-large, wav2vec2-large), BoP: Bag-of-Phonemes, DC: Dale-Chall Readability Index
** Jit: Jitter, Shim: Shimmer, Loud: Loudness (obtained using ITU-R BS.1770-4 standard, via pyloudnorm), Timb: Timbral (Hardness, Brightness, Sharpness), MOS: Quality scores obtained by DNSMOS.
(Intrusive models) E020a: STM-CNN-SE, E020b: STM-CNN-ECA, E020c: FT-Whisper, all with integration and ensemble models.
(Non-intrusive models) E020c-NI: FT-Whisper with integration and ensemble models.

2.2. Linguistic and Acoustic Cues Integration

The crucial impact of hearing loss on speech perception is typ-
ically visualized within an audiogram’s “speech banana” area.
Our method directly integrates various linguistic and acoustic
cues that are particularly relevant to this perceptual impact. Fig-
ure 2 shows the integration of the prediction obtained by the
finetune Whisper model with linguistic and acoustic cues.

For linguistic cues, we first leverage the match error rate
(MER) derived from pre-trained ASR models as an initial in-
dicator of intelligibility. Beyond this, we utilized “bag-of-
phonemes” approach to to quantify the occurrence and distri-
bution of difficult phonemes existing in the text. We also in-
tegrated a readability index to represent the overall ease of un-
derstanding the spoken text. Specifically, we utilized the Dale-
Chall readability formula [6].

For acoustic cues, we incorporate fundamental frequency
(F0), jitter, shimmer, loudness, and timbral features. Studies
consistently show that low-frequency cues, particularly those
related to F0, significantly improve speech recognition in noisy
environments [7]. While jitter and shimmer are less directly
linked to speech-in-noise perception, they are often combined
with other cues and are strongly associated with voice pathol-
ogy [8]. Regarding loudness, simply amplifying sound to re-
store normal loudness can paradoxically lead to excessively
loud sensations at certain frequencies or sound levels, thereby
complicating SPIN understanding for hearing aid users [9].
Furthermore, research indicates that individuals with hearing
loss exhibit diminished timbre discrimination in both quiet and
noisy conditions, a consequence of broadened auditory filters
and reduced sensitivity to fine spectral and temporal details
[10]. Noise is another significant factor influencing intelligi-
bility. Since SNR values are unavailable, we utilized DNSMOS
(Deep Noise Suppression Mean Opinion Score) [11] as a proxy
to estimate speech quality in noisy conditions.

3. Experiments
3.1. Experimental Setup

First, a correlation analysis was conducted between the cue and
correctness to choose the most influential linguistic and acoustic
cues with a threshold of 0.1. The voting regressor used for our
integration model is composed of a GradientBoosting Regres-
sor, RandomForest, and Linear Regression, all utilizing their
default sklearn implementations.

Recognizing statistical discrepancies in cue averages and
standard deviations across datasets, we developed a weighted

ensemble model. This ensemble combines predictions from
four sub-models: (1) left and right (LR) channels with stable
cues (excluding loudness and timbral), (2) LR with all cues, (3)
the mean of LR channels with stable cues, and (4) the mean
of LR channels with all cues. Higher weights were assigned
to sub-models utilizing stable acoustic cues and incorporating
both left and right channel predictions.

3.2. Results

Table 1 presents the speech intelligibility prediction results ob-
tained using the Clarity Prediction Challenge (CPC3) dataset.
Our fine-tuned Whisper model, referred to as FT-Whisper, was
compared against the HASPI [12], demonstrating the adaptabil-
ity of our linguistic and acoustic cue integration approach across
different prediction methodologies. We also applied this inte-
gration strategy and an ensemble model to the STM-CNN-based
methods, as detailed in [13]. For CPC3 evaluation, we submit-
ted specific configurations: the integrated and ensembled Con-
volutional Neural Network with Spectral-Temporal Modulation
input and a Squeeze-and-Excitation (SE) block (STM-CNN-
SE) as E020a; with an Efficient Channel Attention (ECA) block
(STM-CNN-ECA) as E020b; and FT-Whisper as E020c. An
improved non-intrusive version of E020c, designated E020c-
NI, was also included. Due to space limitations, Table 1
presents only representative combinations of these evaluations.
Our results indicate that integrating and ensembling models
generally improved predictions, with RMSE reduced by about 2
and ρ increasing by roughly 0.05. These gains were even more
significant when applied to the HASPI model, where RMSE de-
creased by over 4 and ρ improved by 0.15.

4. Conclusion
This paper proposed integrated models for robust speech intelli-
gibility prediction in individuals with hearing loss. By integrat-
ing linguistic and acoustic cues with a weighted ensemble strat-
egy, we significantly enhanced predictive accuracy of a fine-
tuned Whisper model and other comparative models. Our ex-
periments consistently demonstrated improved RMSE by about
2 and correlation by about 0.05, highlighting the potential of
these combined techniques to advance speech intelligibility pre-
diction for accurate hearing aid development.
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