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Abstract
Hearing loss affects a significant population worldwide leading
to an increase in usage of hearing aids. Ability to accurately pre-
dict intelligibility of speech, especially in noisy environments
can go a long way in helping improve the performance of hear-
ing aids. We present, as part of the 3rd Clarity Prediction Chal-
lenge (CPC3), a deep neural network framework which ben-
efits from the contextual depth of Whisper-based embeddings
and the resilience of Wavelet Scattering Transform (WST) em-
beddings to enable a robust speech intelligibility (SI) predic-
tion. While the Whisper-based embeddings are the output of
the final encoder (1024) and the final decoder (768) of a pre-
trained encoder-decoder transformer trained on 680k hours of
multilingual data, derived from the 80-channel log-Mel spec-
trogram of the input waveform, the second-order WST-based
embeddings, with J=6 filterbanks and Q=8 wavelets per octave
are extracted from the raw waveform. The WST-based embed-
dings provide deformation-stable time-frequency representa-
tions. We propose five systematically designed models: (Model
#1) encode-only, leveraging embeddings from the final encoder
layer of Whisper-medium; (Model #2) decode-only, utilizing
the final decoder layer embeddings of Whisper-small; (Model
#3) encode-decode, a fusion model that combines both encoder
and decoder embeddings; (Model #4) hybrid, a model that uses
encode-decode and WST-based embeddings; and (Model #5)
ensemble, an average of (Model #1+Model #2+Model #3) with
and without post-processing. Each embedding stream is inde-
pendently processed using bidirectional long-short term mem-
ory (Bi-LSTM) layers and attention pooling, followed by fully
connected (linear) layers to predict SI score. Our best perform-
ing ensemble with & without post processing, combining the
outputs of first three models, achieves a root mean square error
(RMSE) of 21.87 & 22.66 respectively, on the development set.
Index Terms: Speech recognition, intelligibility prediction,
human impairment, Whisper embeddings, wavelet scattering
transform (WST).

1. Introduction
Hearing loss is an emerging global public health concern. Ac-
cording to the World Hearing report, by 2050, around 2.5 bil-
lion individuals would experience hearing loss, with at least 700
million requiring rehabilitation [1, 2]. It predominantly impacts
older persons and leads to communication difficulties, social
isolation, and emotional distress, significantly impacting quality
of life [3, 4]. Economically, hearing loss not only contributes to
higher medical costs, especially for mental and cognitive health,
but also results in premature withdrawal from the labor mar-
ket, reduced income, and greater dependence on social services.

Research shows that individuals with hearing loss experience a
52% higher risk of social isolation, a 47% greater probability
of depression, and an unemployment rate that is double that of
people with normal hearing [5]. As a result, hearing health is a
significant concern in the medical domain and a pivotal element
affecting social well-being, demanding urgent global initiatives.

Hearing aids, as wearable and easy-to-use devices, play a
significant role in enhancing speech intelligibility (SI) for those
with hearing impairment [6, 7]. Research comparing hearing
aids of various designs has shown that both basic and advanced
models can significantly improve speech understanding in ev-
eryday situations [8], indicating that even cost-effective devices
offer considerable benefits. However, a significant gap in world-
wide hearing aid services persists, especially in low-income na-
tions, where merely 17% of those requiring hearing aids utilize
them [1]. The gap arises not only from the high expense of mod-
ern hearing aids but also from a deficiency in understanding re-
garding hearing assessments and the public’s inadequate aware-
ness of the advantages of hearing aids, especially their contribu-
tion to improving SI. Traditionally, the evaluation of SI relies on
subjective hearing tests, which are time-consuming, resource-
demanding, and expensive. However, recent advances in ma-
chine learning has enabled exploration of both intrusive and
non-intrusive approaches for objective prediction of SI. These
approaches learn how the auditory system functions and extract
key speech features to predict SI. For instance, non-intrusive
SI machine learning models predicted SI by analyzing speech
signals using convolutional neural networks (CNNs) [9, 10].

The Clarity Prediction Challenge 3 (CPC3) advances the
work of earlier Clarity Enhancement Challenges, namely,
CEC1, CEC2, and CEC3 by integrating a larger and more di-
verse dataset of listener data for model training and evaluation.
It includes the processed audio signals produced by systems
submitted by challenge participants, representing the output of
diverse hearing aid algorithms, along with listener response data
obtained during formal evaluation sessions. The objective of
CPC3 is to predict SI scores for the hearing-impaired listeners
based on the processed audio along with additional information,
like the listener’s hearing loss representation. CPC3 includes
two tracks, namely (a) non-intrusive track, which allows the use
of only the hearing aid processed noisy signal, and (b) intrusive
track, which additionally permits use of clean reference audio.
We propose, as part of the non-intrusive track of CPC3, a novel
framework that allows for integration of two modules which ex-
tract complementary features from the waveform to predict SI.
The first module leverages a pre-trained encoder-decoder ope-
nAI Whisper transformer model to extract high-level acoustic
and linguistic embeddings from the final encoder (layer #24
of Whisper-medium) and final decoder (layer #12 of Whisper-
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Figure 1: Proposed model architectures.

small) layers. These embeddings capture rich contextual in-
formation across multiple levels. These embeddings are fur-
ther refined using a Bi-LSTM layer, followed by attention
pooling to generate compact temporal representation of the
waveform. The second module utilizes a WST layer directly
on the input waveform, extracting first- and second-order coef-
ficients. These coefficients yield low-level time-frequency (TF)
translation-invariant features that are robust to signal deforma-
tions. The WST-based features are further processed using a
Bi-LSTM layer and attention pooling to obtain a fixed-
length embedding. Studies across different domains have re-
ported the advantage of using WST in various applications, such
as, Electroencephalogram classification [11], emotion recogni-
tion [12], unmanned aerial vehicle detection [13], infant cry
scene detection and classification [14]. The embeddings ob-
tained from both modules are then fused via a Weighted Combi-
nation Decoder, which learns to integrate the semantic richness
of Whisper-based features with the robust spectral character-
istics of the WST-based features. This fused representation is
passed via a fully connected (linear) layers with a sigmoid acti-
vation to predict the SI score (see Figure 1). To systematically
assess the contribution of each module, five progressively de-
signed models are developed: (1) encode-only, (2) decode-only,
(3) encode-decode fusion, (4) hybrid (encode-decode-WST in-
tegration), and (5) ensemble with and without post-processing.
The proposed hybrid model efficiently addresses the limita-
tions of the existing methods by integrating high-level contex-
tual representations (Whisper-based embeddings) with noise-
robust, translation-invariant spectral features (WST-based em-
beddings), improving resilience to background noise, captur-
ing individual hearing profiles, and enabling robust generaliza-
tion across real-world, acoustically challenging environments,
which is critical for deployment in hearing aids. The rest of
this paper is structured as follows: Section 2 describes the pro-
posed systems in detail, while Section 3 outlines the experi-
mental methodology. Section 4 presents the findings, whereas
Section 5 concludes the study.

2. Proposed Systems
Figure 1 captures the proposed model designed to address
the non-intrusive track of CPC3. The proposed system lever-
ages the complementary strengths of (a) high-level contex-

tual semantic embeddings derived from the Whisper model,
and (b) robust, low-level TF representations obtained via the
WST layer. Each module incrementally increases in com-
plexity and representational capacity while sharing a common
processing pipeline: extracted embeddings are passed through
Bi-LSTM layers to capture temporal dependencies, followed
by attention pooling to generate compact, informative
embeddings before being combined to predict SI.

2.1. Model #1: Encode-Only

The Whisper-medium model [15] is a pretrained encoder-
decoder transformer trained on 680k hours of multilingual data
for tasks such as speech transcription and voice activity de-
tection consisting of 24 encoder and 24 decoder layers [16].
The input audio signal Ŝ[n] is down-sampled to 16kHz and
zero padded to make it 30 seconds long. Using a window of
25ms and a stride of 10ms, Ŝ[n] is transformed into an 80-
channel log Mel spectrogram Ŝ before inputting to the Whis-
per model. The output of the final encoder layer (layer #24)
which encodes phonetic and acoustic information, is a feature
tensor of shape 1500× 1024× 1, where 1024 representing the
feature dimension per layer. The features are passed through
a Bi-LSTM to capture temporal dynamics, subsequently fol-
lowed by attention pooling. The aggregated embedding
is then passed through a fully connected (linear) layer with a
sigmoid to produce the final predicted SI (see Model #1, Fig 1).

2.2. Model #2: Decode-Only

Model #2 (see Figure 1) isolates the linguistic component of the
waveform using Whisper-small (12 encoder and 12 decoder lay-
ers). For the same Ŝ, embeddings from the final decoder (layer
#12), capturing deep semantic and language-aware representa-
tions are used. These outputs, shapedW×768×1 (whereW is
the number of predicted words), are processed via a Bi-LSTM,
followed by attention layer, along the lines of Model
#1. The resulting embedding is passed to a fully connected (lin-
ear) layer followed by sigmoid layer for SI prediction.

2.3. Model #3: Encode-Decode Weighted Embeddings

Model #3 (see Figure 1) integrated the strengths of acoustic
and semantic cues. It jointly utilizes the final encoder layer
(layer #24) from Whisper-medium and the final decoder layer
(layer #12) from Whisper-small. Each stream is processed inde-
pendently via its own Bi-LSTM and attention pooling,
resulting in two compact embeddings. The embeddings are
then fused through a learnable weighted combination, enabling
adaptive feature balancing based on the input context. The uni-
fied representation is passed through a fully connected (linear)
layer with sigmoid activation to enhance the SI prediction.

2.4. Model #4: Hybrid; Encode-Decode + WST Integration

The hybrid model integrates Model #3 the WST-based embed-
dings. As seen in Figure 1, the same waveform Ŝ[n] is pro-
cessed through a WST layer, which provides robust, invariant,
and stable TF representations crucial for SI prediction. The
WST operates by applying a cascade of predefined complex
wavelet filters ϕλ(t), and averaging via a low-pass filter ψ(t).
The wavelet filter ϕ(t) is a band pass filter with center fre-
quency normalized to 1, and the filter bank is constructed as
ϕλ(t) = λϕ(λt), where λ = 2p/Q for p ∈ Z, and Q = 8 is the
number of wavelets per octave. This setup yields a filter bank



with bandwidth approximately 1
Q

, leading to band-pass filters
centered at λ with a bandwidth of λ

Q
[17]. The zero-order scat-

tering coefficient, given by S0Ŝ[n] = Ŝ ∗ ψ(t), captures the
global average but lacks discriminative information for predic-
tion and is thus excluded. The first-order coefficients, computed
as S1Ŝ[n] = |Ŝ ∗ϕλ1 | ∗ψ(t), capture localized frequency con-
tent while preserving invariance to small temporal translations.
To improve stability under time-warping and capture more com-
plex structures, second-order coefficients are computed after the
first wavelet transform and follows the Lipschitz deformation
stability condition [17]. Higher-order coefficients (m ≥ 2) are
obtained as, SmŜ(t, λ1, ..., λm) = |||Ŝ ∗ψλ1 | ∗ ...|ψλm | ∗ζ(t).

The final embeddings extracted from the three branches,
namely, embed-only, decode-only and WST-based are subse-
quently fused via a Weighted Combination Decoder, which
learns to balance and integrate the semantic richness of Whis-
per embeddings with the robust, low-level spectral embeddings
derived from the WST layer. This fusion module creates a uni-
fied representation that captures both abstract linguistic struc-
ture and detailed acoustic patterns. The fused embedding is
passed through a series of fully connected (linear) layers, con-
cluding with a sigmoid activation function that outputs a scalar
value representing the predicted SI score for the given input
waveform Ŝ[n]. This integrated hybrid architecture (Model #4,
Figure 1) enables robust, generalizable, and objective SI assess-
ment across diverse acoustic conditions, particularly beneficial
for hearing-impaired listeners.

2.5. Model #5: Ensemble with Post-Processing

A post-processing step was applied to the final predictions
generated by ensemble (Model #1+Model #2+Model #3), par-
ticularly for instances (or cases) of mild hearing loss, which
were observed to be consistently underestimated by the ensem-
ble. This approach was designed to enhance predictions post-
model training without altering the model architecture. Post-
processing was applied to the Model #5 predictions (pred) on
900 training data samples with established intelligibility scores
across various hearing loss profiles, including 266 mild samples
corresponding to mild hearing loss. Instead of using a single
correction factor, we adopted a band-wise correction strategy
by dividing the predicted SI scores into ten 10-point bands: (0-
10), (10-20),...,(90-100). For each band, a separate correction
factor αi was optimized using a grid search over 101 values
from 0.00 to 1.00 to minimize the RMSE. We used the follow-
ing correction (predϵ), namely,

predϵ = min ((1 + αi) ∗ pred, 100) (1)

The optimized α values for each band: {0-10: 0.00, 10-20:
0.00, 20-30: 0.53, 30-40: 0.33, 40-50: 0.10, 50-60: 0.35, 60-
70: 0.16, 70-80: 0.19, 80-90: 0.11, 90-100: 0.04}. This band-
wise adjustment slightly scaled the predictions upward, capping
them at 100 to maintain valid score bounds. Extension of (1) to
moderate and moderately severe hearing loss cases yielded no
performance gain, indicating that Model #5 was able to handle
these classes well.

3. Experimental Methodology
The CPC3 data consists of (a) a training set, (b) a development
set, and (c) an evaluation set. Table 1 captures high-level statis-
tics of the CPC3 data. The duration of the audio and the number
of words spoken across the three sets are identical, while the

Table 1: CPC3 Data statistics. Hearing loss shows % of (Mild,
Moderate and Sever).

What Training Development Evaluation
# Audio 15520 926 7674

Hearing Loss (37%, 48%, 15%) (39%, 49%, 12%) (30%, 64%, 6%)
Length (µ, σ2) 5.93 (0.43) 5.70 (0.40) 5.68 (0.38)

Prompt Yes Yes Yes
# words (µ, σ2) 8.29 (1.21) 8.22 (1.22) 8.26 (1.22)

SI Score Yes No No

distribution in terms of ”Hearing loss” the evaluation dataset
is skewed toward Moderate and away from Moderately
sever. We anticipate that the model performance, which is in-
dependent of the ”Hearing loss” might impact the performance
on the evaluation dataset because of this (see Table 1).

3.1. Models Information and Training Procedures

The submission for non-intrusive SI prediction comprises five
systematically designed models that integrate complementary
feature representations as described in earlier sections.

Model #1 employs only the final encoder layer of
the Whisper-medium model, extracting 1024-dimensional
high-level acoustic features processed through a 2-layer
Bi-LSTM (384 units per direction, dropout=0.3), followed by
attention pooling to obtain a compact 768-dimensional
embedding used for SI score prediction via a sigmoid-activated
linear layer. Model #2 focuses on semantic representation by
using the final decoder layer of the Whisper-small model, ex-
tracting 768-dimensional linguistic features. These are also pro-
cessed through a single-layer Bi-LSTM (384 units per direc-
tion) and attention pooling to yield a 768-dimensional
embedding, followed by a sigmoid layer for SI estimation.

Model #3 fuses both encoder and decoder embeddings,
each transformed into 768-dimensional representations through
independent Bi-LSTM and attention pooling blocks.
These are combined using a learnable softmax-based fu-
sion mechanism, followed by a fully connected (linear) layer
(768→1) with a dropout of 0.5, and a final sigmoid-activated
output layer for SI prediction.

Model #4 extends the Model #3 architecture by integrat-
ing low-level, stable, deformation-invariant TF features de-
rived from a second-order WST. The input waveform Ŝ[n]
is processed through a WST layer configured with a Mor-
let wavelet filter-bank (Q = 8 wavelets per octave, average
scale = 2J , where J = 6). The WST computation of order
two (m = 2), implemented via the kymatio 1-D wavelets
[18], produces 126-D coefficients that encode localized spectral
structures while maintaining invariance to small deformations.
These coefficients are passed through a 2-layer Bi-LSTM (384
units in each direction, dropout=0.3), followed by attention
pooling to generate a 768-D feature embedding. The three
768-D embeddings (from the decoder, encoder, and WST
branches) are combined using a learnable softmax-based fusion
mechanism, which assigns dynamic weights to each branch dur-
ing training. The fused representation is then passed through
a prediction block comprising a fully connected (linear) layer
(768→1), with a dropout of 0.3, followed by a sigmoid activa-
tion outputs a normalized SI score. Model #5a, an ensemble
of the first three models, delivers the best baseline performance
by enhancing generalization. Model #5b further improves accu-
racy through post-processing, reducing RMSE while preserving
robustness.



The number of epochs, learning rate, weight decay, and
batch size have been set to 10, 4e-5, 3e-5, and 8, respectively.
Adam and mean square error (MSE) were chosen as the opti-
mizer and loss function. The train and validation sets are split
in the ratio of 90:10 and the model’s performance is assessed
based on root mean square error (RMSE). All experiments were
conducted on an AMD Ryzen Threadripper PRO 3975WX (32-
cores), 128GB RAM, Nividia GeForce RTX 3090 GPU. The
software environment had Python 3.9 running on Ubuntu 20.04.

4. Results and Discussion
We discuss the performance of all the proposed models for the
SI prediction. Table 2 presents the RMSE results for differ-
ent model configurations evaluated on the CPC3 development
set for SI prediction. The encode-only Model #1, using em-
beddings from the final encoder layer of the Whisper-medium
model, achieves an RMSE of 23.45 on the development set,
highlighting the utility of high-level acoustic representations.
The decoder-only Model #2, leveraging features from the fi-
nal decoder layer of the Whisper-small model, yields a slightly
higher RMSE of 23.63, indicating that semantic features alone
are less effective than the acoustic features for the non-intrusive
CPC3 task. The encode-decode Model #3 integrating both
encoder and decoder features through a weighted mechanism
shows improved performance, achieving an RMSE of 23.37.
However, when WST-based TF features are integrated as in
Model #4 along with encoder and decoder embeddings in the
tri-modal fusion model, the RMSE improves to 23.61. This sug-
gests that while the inclusion of invariant spectral features en-
hances the diversity of the representation, it may also introduce
complexity that requires careful balancing. Significantly, the
ensemble model (Model #5a) surpasses the others, achieving
the lowest RMSE of 22.66 on the development set, demonstrat-
ing that the integration of multiple model predictions improves
generalization and yields more reliable SI estimates across di-
verse acoustic scenarios. While using post-processing (Model
#5b), the optimized α reduced RMSE on the training data from
20.14 to 19.60. When applied to the development set, the model
5b led to the RMSE reduction from 22.66 to 21.87, demonstrat-
ing its effectiveness and generalization capability. Similar per-
formance is anticipated on the evaluation dataset.

Table 2: RMSE results of development and evaluation sets for
the final models.

Model RMSE
Development Evaluation

Model #1 Encode-Only 23.45 -
Model #2 Decode-Only 23.63 -
Model #3 Weighted Combination
Encode-Decode 23.37 -

Model #4 Hybrid Weighted Combination
Encode-Decode+WST 23.61 -

Model #5a Ensemble 22.66 -
Model #5b Ensemble with Post-processing 21.87 -

5. Conclusion
This study introduces a novel speech intelligibility (SI) score
prediction framework by combining Whisper-based contextual
embeddings with resilient time-frequency (TF) representations
extracted from the WST layer. The Whisper model captures
rich linguistic and acoustic information through its encoder and
decoder layers, while the WST provides translation-invariant

and deformation-stable features directly from the raw wave-
form. The five systematically designed models−encode-only,
decode-only, encode-decode weighted embeddings, encode-
decode+WST, and ensemble/average model (with & without
post processing)−demonstrate the progressive value of combin-
ing complementary features within a unified Bi-LSTM-based
architecture with attention pooling and fully connected
(linear) layers. Among them, the ensemble model, which ag-
gregates predictions from individual models, achieved the best
performance on the CPC3 data. The findings emphasize the
efficacy of combining high-level semantic features with low-
level invariant features for robust and generalizable SI predic-
tion, particularly for hearing-impaired individuals.
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