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Abstract
This report describes our submitted system for the Clarity Pre-
diction Challenge 3 (CPC3). Our approach primarily draws in-
spiration from the high-performing systems from Clarity Pre-
diction Challenge 2. The goal was to develop a robust speech
intelligibility prediction model by carefully integrating diverse
acoustic and listener-specific information, specifically lever-
aging both explicit evaluation scores (including intrusive and
non-intrusive ones) and powerful pre-trained speech foundation
models for feature extraction. Through an iterative process of
feature selection and combination of these elements, our system
demonstrates competitive performance in predicting speech in-
telligibility for hearing-impaired listeners on the CPC3 dataset.
Index Terms: speech intelligibility, hearing aid, speech quality
assessment, Clarity Prediction Challenge 3

1. Introduction
Speech intelligibility prediction is crucial for evaluating hearing
aid device performance and enhancing the communication ex-
perience for individuals with hearing impairment. The Clarity
Prediction Challenge series provides a common platform for re-
searchers to develop and compare various speech intelligibility
prediction models. Compared to CPC2 [1], CPC3 introduced a
significant change by simplifying detailed audiograms to a gen-
eralized hearing loss degree, which necessitates models to adapt
to this more abstract listener information. Despite this change,
the fundamental principles of intelligibility prediction remain,
allowing successful approaches from previous challenges to be
adapted and refined. In CPC2, the E009 [2] and E011 [3]
systems achieved significant results by combining multimodal
features and utilizing hierarchical features from deep learning
models, respectively. Inspired by these successful approaches,
we designed and implemented a comprehensive intelligibility
prediction system for CPC3.

2. System Methodology
2.1. Feature Extraction

Our CPC3 system integrates the core ideas from the E009 and
E011 reports, with adaptive improvements to meet the specific
requirements of the CPC3 challenge.

We adopted a multi-source feature extraction strategy, pri-
marily including:

Explicit Intelligibility Metrics: We integrated a series of
explicit speech quality and intelligibility metrics as input fea-
tures. These metrics can be broadly categorized as:

• Intrusive metrics (require clean reference signal):

– STOI (Short-Time Objective Intelligibility) [4]:
evaluated across frequency bands to model dy-

namic auditory scenarios. Similar to E009 we used
two ears’ 15-dimensional STOI.

– HASPI (Hearing Aid Speech Perception In-
dex) [5]: incorporates hearing-loss-informed
weighting for intelligibility prediction.

– PESQ (Perceptual Evaluation of Speech Qual-
ity) [6]: a full-reference metric defined in ITU-T
P.862 (2001), estimating perceptual speech qual-
ity by comparing a degraded signal against a clean
reference. Scores range from approximately –0.5
to 4.5, aligning with MOS.

– ScoreQ [7]: a contrastive regression framework
using triplet loss to train a MOS predictor that
significantly improves cross-domain generaliza-
tion, operating in both no-reference (NR) and
non-matching reference (NMR) modes to flexibly
enhance prediction performance. In our experi-
ments we use both its NR and NMR so it worked
in intrusive mode.

• Non-intrusive metrics (no reference needed):

– UTMOS [8]: a learning-based MOS predictor
from VoiceMOS Challenge 2022, based on ensem-
bles of self-supervised models, ranking top across
several test tracks.

– NISQA [9]: CNN+self-attention architecture
trained on crowd-sourced ratings, outputting five
speech quality indicators: Overall Quality, Noisi-
ness, Coloration, Discontinuity, and Loudness.

– DNSMOS-Pro [10]: a lightweight DNN trained
to predict probabilistic MOS distributions for
speech quality (posterior mean and variance), sig-
nificantly smaller than DNSMOS yet performing
competitively across datasets.

Audiometric Data: Unlike CPC2, CPC3 simplified de-
tailed audiograms to a generalized hearing loss degree. We ac-
cordingly incorporated the hearing loss degree information of
hearing-impaired individuals as an input feature for personal-
ized prediction.

Pre-trained Features: We primarily leveraged the noise-
robust speech foundation model Whisper [11] to extract
content-rich features from speech signals. The Whisper model
excels at processing speech in complex noisy environments,
effectively disentangling signal and noise information, thus
providing richer representations for intelligibility prediction.
We applied temporal Transformer and layer-wise Transformer
structures, similar to those in E011, to aggregate these features
across different time steps and model layers.



3. Experiments and Results
We conducted a comprehensive experimental evaluation of our
systems on the CPC3 dataset.

For systems relying solely on explicit intelligibility scores,
a Logistic Regression model was utilized. This model consists
of a single dense layer followed by a sigmoid activation func-
tion, and it was optimized using Mean Squared Error (MSE)
loss. It takes the concatenated explicit scores and audiometric
data as input and directly predicts the intelligibility. Training
was performed with a learning rate of 10−2 until convergence.

For systems combining explicit scores with pre-trained fea-
tures, the model was built upon the Transformer-based architec-
ture proposed in E011. This architecture processes each audio
channel from the binaural signal through a noise-robust foun-
dation model (Whisper in our primary configuration), yielding
sequences of representations at each layer. These representa-
tions undergo temporal pooling and linear projection. A key
adaptation in our system is the integration of the explicit in-
telligibility metrics (as described in Section 2.1) into this ar-
chitecture. Specifically, instead of concatenating the listener’s
audiogram information (as done in CPC2) before the layer-wise
transformer, we concatenate the combined explicit intelligibil-
ity scores with the layer representations across the layer axis.
This allows our model to leverage both the rich, learned features
from the pre-trained model and the interpretable, engineered
features from established metrics. The resulting sequence is
then fed into a layer-wise transformer, yielding multi-level fea-
tures. These features are subsequently compressed via global
average pooling. The final representations from both chan-
nels are averaged and linearly projected to output the predicted
speech intelligibility score.

Table 1 summarizes the RMSE results for various explicit
intelligibility metrics and their combinations. Unless otherwise
specified, all metrics incorporate the hearing loss label of each
hearing-impaired listener.

Metric Type Dim RMSE
HASPI (Baseline) Intrusive 1×2 28.03
STOI Intrusive 15×2 27.41
PESQ Intrusive 1×2 31.23
ScoreQ Intrusive 2×2 29.42
UTMOS Non-intrusive 1×2 Worse
DNSMOS-Pro Intrusive 2×2 Worse
NISQA Non-intrusive 5×2 Worse
STOI + UTMOS Intrusive 16×2 26.77
STOI + HASPI Intrusive 16×2 25.45
STOI + HASPI + UTMOS Intrusive 17×2 26.54
STOI + HASPI + PESQ Intrusive 17×2 25.80
STOI + HASPI + ScoreQ Intrusive 18×2 25.60
STOI + HASPI + ScoreQ + PESQ Intrusive 19×2 24.94
All Metrics (w/o NISQA and DNSMOS-
Pro)

Intrusive 20×2 25.02

All Metrics (w/o NISQA) Intrusive 21×2 25.04
All Metrics Intrusive 26×2 25.80
Whisper Non-intrusive – 24.11
Whisper + STOI + HASPI + ScoreQ +
PESQ

Intrusive – 24.05

Table 1: RMSE performance and input dimensions of individual
and combined metrics.

From the results, it is evident that several non-intrusive met-
rics (UTMOS, DNSMOS-Pro, NISQA) individually showed
high loss values, indicating their limited utility in isolation for
this task, and were not further evaluated for submission due to
their poor performance during training. The combination of
STOI, HASPI, ScoreQ, and PESQ yielded a significantly im-
proved RMSE of 24.94, suggesting that ScoreQ, in particular,

contributed positively to the overall performance when com-
bined with other effective metrics.

While Whisper provides strong non-intrusive performance,
adding explicit intrusive metrics (STOI, HASPI, ScoreQ,
PESQ) yields only a minor improvement. This suggests that
pre-trained representations already encode much of the percep-
tual information.

Our final submission used the output from Whisper + STOI
+ HASPI + ScoreQ + PESQ system (intrusive).

4. Conclusion
In this report, we presented a speech intelligibility prediction
system for hearing-impaired listeners in the Clarity Prediction
Challenge 3. By integrating both explicit intelligibility met-
rics—ranging from traditional intrusive measures like STOI,
HASPI, and PESQ to more recent learning-based indicators like
ScoreQ and UTMOS—and robust pre-trained features from the
Whisper model, our system achieved competitive performance.
While explicit metrics alone showed meaningful improvements
when combined, we observed that the Whisper model alone al-
ready delivered strong results, with additional explicit features
providing only marginal gains. This suggests that powerful pre-
trained representations implicitly capture many aspects of per-
ceptual intelligibility.
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