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Abstract
While previous studies have shown that adapting Automatic
Speech Recognition (ASR) models can outperform intrusive
methods, many existing approaches still rely on pre-trained
ASR models without domain-specific adaptation. In this work,
we investigate the effect of fine-tuning ASR models using a
domain-specific signal dataset to improve representation qual-
ity. Furthermore, we conduct a comparative evaluation of two
prominent Deep Neural Network (DNN) architectures for au-
dio modeling, such as Convolutional Neural Networks (CNNs)
and Transformers. Notably, both models outperform the Hear-
ing Aid Speech Perception Index (HASPI) score, with the
Transformer-based model demonstrating higher performance
due to its ability to capture global contextual information.
Index Terms: domain adaptation, deep neural network (DNN),
speech recognition, computational paralinguistics

1. Introduction
Predicting speech intelligibility, a core focus of the Clarity Pre-
diction Challenge (CPC), is crucial for improving communica-
tion and understanding individuals with hearing impairments.
Kate et al. suggest an intrusive way for the prediction, the
Hearing Aid Speech Perception Index (HASPI), which is calcu-
lated by comparing the coherence between the reference signal
and the signal processed through a hearing aid, using an au-
ditory model that simulates both normal-hearing and hearing-
impaired listeners [1]. However, for the speech intelligibil-
ity task, the HASPI demonstrates certain limitations. Figure 1
presents the relationship between the HASPI score and the cor-
responding correctness (the percentage of correctly identified
words) in the CPC3 dataset. Although the overall trend resem-
bles a sigmoid curve, there remains considerable variation in
the correctness. Furthermore, HASPI’s predictive mechanism
is predominantly bottom-up (signal-driven) rather than integrat-
ing top-down (context-driven) cognitive processes and also re-
quires a clean, unprocessed reference speech signal for compar-
ison against the degraded or processed signal, a condition often
absent in real-world scenarios.

To address the latter issue, the previous work developed
non-intrusive systems with pre-trained large acoustic models,
such as Automatic Speech Recognition (ASR) [2]. One such
attempt was suggested by Mogridge et al. [3], which proposed
a model based on Whisper [4], a large pre-trained ASR model
to extract rich features from the signal. They enhanced pre-
diction performance by applying a Bidirectional LSTM (Bi-
LSTM) with attention pooling to these features, showing signif-
icantly improved intelligibility estimation compared to HASPI.

Figure 1: Comparison of correctness and the HASPI score.

Moreover, Cuervo et al. [5] further improved the perfor-
mance by leveraging cross-attention mechanisms to integrate
ASR-derived features with binaural information. Subsequently,
Cuervo et al. [6] have shown that such cross-attention archi-
tectures significantly boost prediction performance, especially
when combined with diverse ASR foundation models. How-
ever, most of the works adapted the pre-trained ASR by freezing
the parameters of the model.

Inspired by these advances, our study proposes a two-stage
framework: (1) We perform fine-tuning Whisper on the hearing
aid output (signal) and the corresponding response from indi-
viduals with hearing impairment (response). By leveraging a
pre-trained large-scale ASR model, we adapt its representations
to align with the CPC domain. (2) Then, we utilize the extracted
features from Whisper as inputs to either a Convolutional Neu-
ral Network (CNN) or a Transformer-based model for a regres-
sion task. While both architectures significantly outperform
HASPI-based metrics, the Transformer-based model demon-
strates distinguished performance due to its ability to capture
global contextual information, such as phonemes affected by
hearing loss.

2. Data Preprocessing and Model
Architecture

2.1. ASR Fine-Tuning
Among the widely used pre-trained models in the CPC chal-
lenge [2], such as Whisper [4] and WavLM [7], we adopted
Whisper as our ASR backbone. To align with the encoder-
decoder architecture of Whisper, we preprocessed the CPC3
training dataset accordingly. In the original dataset, user re-
sponses were either empty or composed solely of ‘#’ sym-
bols when the audio was not recognized. However, for ASR
training, it is necessary to provide sufficient tokens as decode
input for predicting tasks. To address this, let the true label
(prompt) contain Nt tokens, denoted as T = {t1, t2, . . . , tNt},
and the user answer (response) contain Na tokens, denoted as



Figure 2: The overview of the Whisper fine-tuning.

A = {a1, a2, . . . , aNa}. To standardize the input length for
ASR training, when Nt > Na, we pad the response A with
‘#’ tokens so that Nt = Na, as shown in Figure 2.

Using preprocessed text data and waveform audio sampled
at 16,000 Hz — the default setting of the Whisper’s feature ex-
tractor — we trained the encoder and decoder for the next token
prediction task. In line with prior work [5, 3], we split the audio
into left and right channels and trained separate ASR models for
each channel. The models were trained with a batch size of 16,
a learning rate of 1× 10−5, and for 500 epochs.

2.2. CNN and Transformer Pre-Training

Figure 3: The overview of the CNN/Transformer-based model.

Using the frozen fine-tuned ASR model, we extracted its
hidden states and employed them as input features for both
CNN and Transformer-based models in the regression task. The
overall architecture is illustrated in Figure 3, where 1 repre-
sents the CNN-based model and 2 displays the Transformer-
based model.

The architecture of the CNN-based model is inspired by
audio embedding models such as Wav2vec [8], HuBERT [9],
and WavLM [7]. It combines a CNN layer followed by a self-
attention mechanism to effectively capture local temporal fea-
tures while modeling global relationships within the audio.

On the other hand, we also constructed a Transformer-based
model adopting two layers of Transformer [10] encoder to more
effectively capture global dependencies across long-form tran-
scription. The experimental results for the two models are ex-
plained in the Section 3.3.

3. Experiments and Results
3.1. Experimental Setting
All experiments were conducted on a single NVIDIA RTX
A6000 GPU (40GB VRAM), with 1.0T RAM, and a storage
system comprising three 7TB SATA SSDs and two NVMe
SSDs. The software environment included PyTorch 2.6.0, run-
ning on Ubuntu 20.04 with CUDA 11.4. The FLOPs, parameter
counts, and estimated GPU memory requirements of the models
were computed using the THOP profiler.

Table 1: Comparison of parameters and FLOPs of CNN-based
and Transformer-based models.

Approach Param. (M) FLOPs (G)

CNN-based 175.18 263.22
Transformer-based 174.01 261.45

Table 1 summarizes the estimated resource requirements.
While both architectures exhibit similar computational com-
plexity, the CNN-based model shows slightly higher FLOPs and
parameter counts than the Transformer-based model.

3.2. Dataset
Our experiments are conducted exclusively on the CPC3
dataset, without integrating any external data. During training,
we use only the signal data from the training subset, along with
the corresponding sentence data representing human responses.

3.3. Results
Table 2: Comparison of HASPI, CNN-based and Transformer-
based approaches in terms of correlation and RMSE.

Approach Correlation (↑) RMSE (↓)

HASPI (Baseline) 0.72 28.00

CNN-based 0.81 23.37
Transformer-based 0.82 22.95

Table 2 presents the correlation and Root Mean Squared
Error (RMSE) for the HASPI (baseline), CNN-based, and
Transformer-based models on the dev dataset. Both the CNN
and Transformer variants significantly outperform the baseline,
demonstrating the efficacy of a non-intrusive, fine-tuned ASR
approach. Notably, the Transformer-based model achieves the
lowest RMSE score, which can be attributed to its ability to ag-
gregate global spatial information via self-attention, in contrast
to the CNN’s reliance on local receptive fields [11].

This experimental result reflects the characteristics of the
domain and dataset, as the frequencies that individuals with
hearing loss struggle to perceive are not localized but rather
globally distributed, which makes the Transformer architecture
more suitable for capturing such patterns. The Transformer’s
self-attention mechanism effectively modeled individual differ-
ences in hearing loss through attention weights.

4. Conclusions and Future Works
We developed and compared a domain-specific fine-tuned ASR
model, augmenting its architecture with the DNNs, such as
CNN or transformer layers, for enhancing speech intelligibility
prediction. To the best of our knowledge, this is the first attempt
to apply such an approach in CPC. Experimental results demon-
strate that the proposed method significantly outperforms the
HASPI baseline, highlighting the effectiveness of our proposed
method. However, the current model does not incorporate au-
diogram information, which represents individualized hearing
loss profiles. As part of future work, we plan to investigate the
impact of incorporating phoneme-level weighting informed by
audiogram data to further enhance prediction performance.
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