
Abstract 
This work introduces a novel non-intrusive speech intelligibility prediction model developed for the Clarity Prediction 
Challenge 3 (CPC3) dataset. The proposed system leverages multi-level representations extracted from three 
complementary sources: OpenAI’s Whisper ASR model, Microsoft’s WavLM self-supervised learning model, and a 
Convolutional Routing Transformer Attention (CRTA) mechanism. These representations are fused within a multi-
branch architecture to predict intelligibility scores as perceived by hearing-impaired individuals, without access to a 
clean reference signal. The system was trained on CPC3 data and evaluated using listener-derived correctness scores. 
It achieved a Pearson correlation of 0.78 and an RMSE of 26.28 on development set. The model generalizes well to 
unseen listeners and hearing aid configurations, making it suitable for clinical applications. 
1. Introduction 
Hearing loss is a rapidly growing public health concern, currently affecting 466 million people worldwide and 
projected to impact over 630 million by 2030 due to global aging [1]. Older adults are particularly susceptible to 
hearing degradation due to physiological changes in the cochlea and auditory pathways [2, 3]. As the condition 
progresses, speech intelligibility (SI) especially in noisy environments becomes significantly impaired, leading to 
social, emotional, and cognitive decline [4]. To address this, hearing aid (HA) technologies have advanced, yet robust 
evaluation methods for their effectiveness are still lacking [5, 6]. Traditional human listening tests are costly and labor-
intensive [7, 8], while existing objective metrics like HASPI [9] depend on access to clean reference signals, which 
limits real-world applicability [10]. 
Recent research has focused on non-intrusive models that estimate intelligibility from HA-processed audio without 
requiring reference signals [11]. The use of deep learning, particularly self-supervised and ASR-based models, has 
shown promise [12]. For example, HASA-Net and HASA-Net+ estimate SI by integrating acoustic signals with 
listener profiles [13]. Other approaches incorporate pre-trained speech foundation models (SFMs), as in Cuervo and 
Marxer [14] and Mogridge et al. [15] or combine intelligibility and quality estimation from HA outputs [16]. The 
CPC3 dataset provides a robust platform to test such systems, simulating realistic HA scenarios with diverse acoustic 
environments and listener data. 
2. Methodology 
Our proposed system is built around a multi-branch neural architecture designed to capture low-level acoustic, mid-
level phonetic, and high-level linguistic information relevant to human perception. It consists of three parallel 
branches. The first is inspired by OpenAI’s Whisper ASR model, and processes 40-bin log-Mel spectrograms using 
convolutional layers followed by Transformer encoder blocks. Adapter modules are included to fine-tune the ASR 
features for intelligibility prediction while minimizing overfitting. The second branch uses raw audio waveforms as 
input to a pre-trained WavLM Base model [17], which extracts robust, generalizable features learned from large-scale 
unlabeled speech data. Adapter layers again help align these representations to the downstream task. The third branch 
incorporates a CRTA module with sparse attention over Mel-spectrograms, selectively enhancing frames that 
contribute most to intelligibility. This attention output is processed through a convolutional feedforward network. 
After feature extraction, outputs from all three branches are concatenated and passed through a bi-directional LSTM 
for temporal modeling, followed by two multi-head attention blocks that refine feature interactions. The final layers 
include fully connected blocks with GELU activations and a sigmoid output to map predictions between 0 and 1. 
Adaptive average pooling ensures consistency across variable-length input. During inference, the better-ear strategy 
is used: the ear (left or right channel) with the higher predicted intelligibility score is selected, reflecting the well-
known auditory better-ear effect [18]. 
3. Experimental Setup 
The system was trained using the CPC3 dataset, which contains 15,520 stereo audio samples sampled at 32 kHz. The 
training set included 12,410 samples derived from CEC1 and CEC2, while the validation set consisted of 3,110 
samples from the acoustically diverse CEC3. Each audio sample is associated with a structured listener response, 
including transcription accuracy, which serves as the ground truth target. All preprocessing and model evaluation were 
done on stereo .wav files. During evaluation, intelligibility scores are predicted separately for left and right channels, 
and the highest score is selected per sample. 
The model was trained for 200 epochs using L1 loss (mean absolute error), a batch size of 1, and the Adam optimizer. 
This setup was chosen to handle variability in signal content and duration. Training was performed on a single 
NVIDIA A100 GPU (40 GB) and completed in approximately 18 hours. No external data beyond CPC3 was used, 
and only officially released versions of the Whisper and WavLM Base models were employed, fully aligning with 
CPC3’s non-intrusive track requirements. 
4. Results 
Our system achieved a Pearson correlation of 0.78 and an RMSE of 26.28 on the CPC3 development set, 
outperforming the CPC3-provided HASPI baseline model (correlation 0.72, RMSE 28.7). HASPI computes 



intelligibility using auditory modeling and clean reference signals and applies logistic regression to produce 
percentage correctness predictions. While this intrusive method offers high performance in controlled settings, it is 
less suited for clinical or embedded applications where reference signals are unavailable. 
To further analyze model robustness, we examined specific validation samples with mismatched subjective and 
HASPI predictions. For instance, CEC1_E005_S08837_L0219 had a HASPI score of 0.648 but a subjective 
correctness score of 0, indicating a clear perceptual mismatch. Conversely, CEC2_E008_S08625_L0201 had a HASPI 
of just 0.036 yet was rated at 71.4% by listeners. These discrepancies highlight the limitations of intrusive metrics in 
capturing perceptual intelligibility, particularly in the presence of HA processing artifacts. 
5. Discussion 
The superior performance of our non-intrusive model emphasizes the value of multi-stream feature fusion, particularly 
when combining ASR, SSSR, and sparse attention mechanisms. Our architecture captures both local and global speech 
dynamics and is capable of adapting to diverse noise conditions and HA processing styles. The ability to generalize 
to unseen listeners and unseen HA algorithms is critical, given the increasing personalization in hearing healthcare. 
The disjoint validation setup—where listeners and HA systems are not seen during training, ensured our model’s 
generalization capacity aligned with CPC3 expectations. 
6. Conclusion 
We present a non-intrusive intelligibility prediction model that combines pre-trained ASR (Whisper), self-supervised 
(WavLM), and attention-based (CRTA) representations. Our system meets all CPC3 challenge rules and significantly 
outperforms the HASPI baseline. With no need for clean references and demonstrated generalization to unseen 
listeners and processing pipelines, our method is well-suited for clinical deployment and HA-integrated intelligibility 
estimation. This work contributes a scalable, perceptually aligned, and technically robust approach to speech 
intelligibility prediction. 
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