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Abstract
We propose three systems based on an improved multi-

branch speech intelligibility prediction model (iMBI-Net) for
the third edition of the Clarity Prediction Challenge. The
base system integrates spectral, waveform, and Whisper-based
features with severity-level audiogram information, processed
through a multi-branch convolutional-bidirectional module with
attention mechanisms. The second system, iMBI-Net-R, adds
a single refinement module on top of the base model. The
third system, iMBI-Net-E, includes three refinement modules,
each using different acoustic inputs, with score-level ensem-
bling across the branches. Experimental results confirm that
multi-stage training with diverse objectives boosts performance,
and iMBI-Net-E achieves the best results among all our submit-
ted systems, demonstrating the effectiveness of our approach.
Index Terms: speech intelligibility, hearing aid, hearing loss,
self-supervised learning, cross-domain features

1. Introduction
With the launch of two Clarity Prediction Challenges [1, 2],
there has been growing interest in the development of non-
intrusive speech intelligibility prediction models for hearing
aids (HAs) [3, 4, 5, 6]. Results from both challenges show
that incorporating richer acoustic features leads to overall bet-
ter prediction performance. For example, in the first chal-
lenge, using hidden layer features from ASR models [6] and
SSL models [7] resulted in better performance. In the second
challenge, Whisper-based features were particularly effective,
with all three top-performing non-intrusive systems leveraging
Whisper for acoustic feature extraction [3, 4, 5].

Recently, the third edition of the Clarity Prediction Chal-
lenge aims to address a more challenging scenario, where only
severity level information is available, without access to spe-
cific listener audiograms in the input features. Building on the
notable performance of our previous MBI-Net+ model [5], we
propose an improved multi-branch speech intelligibility predic-
tion model, referred to as iMBI-Net. Specifically, we deploy
three versions of the model. The first system is the base ver-
sion of iMBI-Net, which integrates three types of acoustic fea-
tures—spectral features, waveform features, and Whisper-based
features—along with audiogram information representing hear-
ing loss severity. The second system, named iMBI-Net-R, ex-
tends the base model by incorporating a single refinement mod-
ule for score adjustment. The third system, iMBI-Net-E, em-
ploys three separate refinement modules, each utilizing distinct
acoustic inputs to better capture diverse signal characteristics.
Additionally, score-level ensembling is applied across the re-
finement outputs. Experimental results confirm that applying

Figure 1: Architecture of the iMBI-Net-E model.

multi-stage training with different objective functions to the
base module improves performance over intrusive baseline sys-
tems. The addition of refinement modules yields further gains,
with iMBI-Net-E achieving the best performance among all our
submitted systems, highlighting the effectiveness of our pro-
posed approach.

2. Proposed Systems
In this section, we present three proposed systems for the chal-
lenge: iMBI-Net (E011A), iMBI-Net-R (E011B), and iMBI-
Net-E (E011C). The overall model architecture is shown in
Fig. 1. The base model of iMBI-Net follows the architecture
of our previous MBI-Net+ model [5]. However, unlike MBI-
Net+, which incorporated the MSBG hearing loss model, our
iMBI-Net directly integrates the relative severity level informa-
tion into the model. Furthermore, unlike the original MBI-Net+,
which used only mean square error (MSE) as the objective func-
tion, we introduce a multi-stage objective function. This in-
cludes a rank-based contrastive loss in the second stage, and a
combination of MSE and Pearson correlation loss as the final
objective. This strategy allows us to improve prediction perfor-
mance without increasing the model size.

For iMBI-Net-R, the model consists of the base model and
a refinement module, specifically using the type B refinement



Figure 2: Detailed architecture of Base-Model

as shown in Fig. 3. In this system, the base model is fixed, and
we use its estimated score and corresponding acoustic features
to guide the refinement. The refinement module is designed to
estimate the residual score, i.e., the difference between the base
prediction and the ground-truth score. The training objective
includes both MSE and Pearson correlation coefficient (PCC)
losses for accurate residual estimation.

In the final model, iMBI-Net-E, we introduce two addi-
tional refinement branches, referred to as refinement A and
refinement C. These differ in their input features and pooling
strategies. For example, refinement A does not use an adapter
layer and directly concatenates power spectral (PS) features
with Whisper features, which are then passed through a BLSTM
module. The rest of the architecture follows Fig. 3. In refine-
ment C, only Whisper features are used as input to the BLSTM.
Instead of attentive pooling, we apply mean pooling before con-
catenating the result with the base score and feeding it into an
MLP, similar to refinement B in Fig. 3. Each refinement mod-
ule is trained individually to ensure better stability. Finally, we
stack the three refinement modules on top of the base model and
perform score averaging to produce the final prediction.

3. Experiments
In this section, we present the experimental setup and results of
iMBI-Net on the Clarity Prediction Challenge 2025 dataset.

3.1. Experimental Setup

The Clarity Prediction Challenge (CPC) 2025 dataset includes
numerous systems carried over from the preceding Clarity En-
hancement Challenge. Unlike the previous edition, only sever-
ity level information is available in the current edition. We
split the dataset into 13,968 samples for training and 1,552
samples for additional validation. Furthermore, three evalua-
tion metrics—root mean square error (RMSE), linear correla-
tion coefficient (LCC), and Spearman’s rank correlation coeffi-
cient (SRCC)—are used to assess the performance of MBI-Net.
A lower RMSE indicates that the predicted scores are closer to

Figure 3: Detailed Architecture of Refinement Model

Table 1: Evaluation scores of MBI-Net+ on our validation set.

Systems RMSE SRCC LCC
iMBI-Net (E011A) 20.7773 0.7985 0.8498

iMBI-Net-R (E011B) 20.5648 0.8031 0.8550
iMBI-Net-E (E011C) 20.4848 0.8076 0.8555

the ground-truth scores (lower is better), while higher LCC and
SRCC values indicate stronger correlations between the pre-
dicted and ground-truth scores (higher is better).

3.2. Experimental Results

As shown in Table 1, all variants of iMBI-Net achieve notably
low RMSE scores. Furthermore, by adding a refinement mod-
ule, iMBI-Net-R outperforms the base version of iMBI-Net. In-
terestingly, with the addition of two more refinement modules
and the application of score averaging, iMBI-Net-E achieves the
best overall performance, further demonstrating the advantages
of using an ensemble model with appropriately designed refine-
ment modules. Additionally, the base version of iMBI-Net cur-
rently submitted to the challenge development set leaderboard
achieves an RMSE of 22.80, ranking third out of 33 systems.

4. Conclusion
In this paper, we introduce iMBI-Net, an improved multi-
branch speech intelligibility prediction model, along with two
enhanced variants: iMBI-Net-R and iMBI-Net-E. Through the
integration of diverse acoustic features and multi-stage training
strategies, our models demonstrated notable performance on the
Clarity Prediction Challenge 2025 dataset. The addition of re-
finement modules and score-level ensembling further improved
prediction accuracy, with iMBI-Net-E achieving the best results
among our iMBI-Net systems. These findings highlight the po-
tential of multi-branch and refinement-based architectures for
advancing non-intrusive intelligibility prediction in hearing aid
applications.
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