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Our overall aim is to create "multi-modal” (MM) aids which not only amplify sounds but
contextually use simultaneously collected information from a range of sensors to improve
speech intelligibility.
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What?

Our overall aim is to create "multi-modal” (MM) aids which not only amplify sounds but
contextually use simultaneously collected information from a range of sensors to improve
speech intelligibility.

“loT” data

< %

Transmission architectures
Two-point neural models

Video

RF sensing
AVSEC challenge
“Wireframe” lipreading

—>
—>
—>

Constraints .. Constraints

.. Privacy .. Devices need to be very small

.. Wearability .. Tiny LI-ION cell, power budget: <1-5 mW
.. Very low audio processing delay: < 10 ms

https://cogmhear.org/ 4



Codec Frame
Stl'uctlll'eS Audio-Visual Speech Enhancement in Multimodal

2022 IEEE International Conference on E-health Networking, Application & Services (HealthCom)

A Novel Frame Structure for Cloud-Based

Hearing-aids
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Model of cloud-based audio-visual speech enhancement hearing aid
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Codec Frame
Structures

TABLE 1

COMPARING STATE-OF-THE-ART AUDIO CODECS

Parameters

OPUS codec

EVS codec

Signal Bandwidth

4 kHz 1o 24 kHz

4 kHz 1o 20 kHz

Supported Bit-rates

6 kbps to 510 kbps

5.9 kbps to 128 kbps

Standardized By

[ETF (in 2012)

3GPP (in 2016)

YouTube, Skype,

Voice over LTE
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Audio-Visual Fully Connected TABLE III
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Fig. 1. Model of cloud-based audio-visual speech enhancement hearing aid
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lip-reading reading lips under the face mask

Received: 1 April 2022 Hira Hameed', Muhammad Usman'>, Ahsen Tahir &', Amir Hussain®,
Hasan Abbas’, Tie Jun Cui @ %, Muhammad Ali Imran @' & Qammer H. Abbasi @'
Accepted: 21 July 2022

Published onling: 07 September 2022

The problem of Lip-reading has become an important research challenge in
cent years. The goal is to recognise speech from lip movements. Most of the

ip-reading technologies developed so far are camera-based, which require
p Heo recording of the target. However, these technologies have well-known
' ritations of occlusion and ambient lighting with serious privacy concerns.
X » Jrthermore, vision-based technologies are not useful for multi-modal hearing
s in the coronavirus (COVID-19) environment, where face masks have
) gcome a norm. This paper aims to solve the fundamental limitations of
‘ mera-based systems by proposing a radio frequency (RF) based Lip-reading

mework, having an ability to read lips under face masks. The framework
ploys Wi-Fi and radar technologies as enablers of RF sensing based Lip-
‘ading. A dataset comprising of vowels A, E, I, O, U and empty (static/closed
B ) is collected using both technologies, with a face mask. The collected data
sed to train machine learning (ML) and deep learning (DL) models. A high

o 3 % S . LAY LS I ssification accuracy of 95% is achieved on the Wi-Fi data utilising neural
M y B N ‘11-5’;“ %f):}h N Ly“ & Jas % i twork (MN) models. Moreover, similar accuracy is achieved by VGG16 deep

rning model on the collected radar-based dataset.
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Fig.2 | Pronounced vowels with their representadon in Wi-Fiand radar signal.

representing various vowels classes. ¢ Radar data samples with mask representing
a Avisualillustration of the pronounced vowels. b WiFi data samples with mask

various vowels classes.




® “Fig. 3 | Experimental setup of the data collection through radar and Wi-Fi.
Ra 10— requency A Front view of the data collection setup using XethruUWB radar.
B Top view of the radar-based data collection.

lip_reading C Front view of Wi-Fi based data collection.

D Top view of the Wi-Fi-based data collection setup.”
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Radio-frequency

lip-reading

Accuracy of best deep-
learning model classifying
the radio-freq data

5 vowels + blank
 x 3 talkers
« x with/without facemask

<

- Radar .. 73% without facemask
86% with ..

Wifi .. 61% without facemask

\_ 73% with ..

Radar system
Rx/Tx sensor on top of laptop screen
Distance = 0.45 m
f=73GHz ~.A=4cm
Spectrograms of Doppler shifts

Wifi system
Separate Tx/Rx on desk.
Distance = 0.45 m
f=25GHz . A=12cm

“Channel-state-information” amplitude
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Accuracy of best deeplearning model at
classifying 15 BSL gestures x 4 presenters
(about 3:1 training-testing ratio of data) = 90%

British Sign
Language
Classification

Radio-frequency
BSL

2090 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 10, NO. 4, AUGUST 2023

Recognizing British Sign Language Using
Deep Learning: A Contactless and
Privacy-Preserving Approach
Hira Hameed. Student Member, IEEE. Muhammad Usman™, Senior Member, IEEE, Ahsen Tahir, Member, IEEE,

Kashif Ahmad™. Senior Member, IEEE, Amir Hussain, Senior Member, IEEE.
Muhammad Ali Imran™. Senior Member, IEEE, and Qammer H. Abbasi™. Senior Member, IEEE
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(b) Sister. (c) Mother. (d) Father. (¢) Family. (f) Confuse. (g) Depress. (h) Happy

------------------ ! Fig. 3. Visual illustration of the pronounced BSL. (a) Brother
o) Stop

i) Hate. (j) Sad. (k) Walk. () Eat. (m) Help. (n) Drink. (0)
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COG-MHEAR Demonstrations

World’s first Real-time AV Speech Enhancement Demonstrator:

(Initial Use case: Real-time, Web-based Video Conferencing Applications)

Recording of Live Video Demo showcased at the 2022 IEEE Engineering in Medicine and Biology (EMBC) Workshop: 2 speakers communicating in real-time on

MS Teams, physically based in two distant noisy Cafe locations within the EMBC Conference venue (SECC, Glasgow, UK)

Play (k)




