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Motivation

Hearing loss affects approximately 12 million people (1in 5) in
the UK, with the number expected to grow
Automatic evaluation of speech intelligibility can help with
the development of hearing aids

o Typically, testing of hearing aid systems is expensive and

time consuming

Human audio rating prediction is an emerging aread of
research
Goal: Non-intrusive speech intelligibility prediction
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Clarity Prediction Challenge
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Prior Work

Recent work [1] has found that Self
Supervised Speech Representations
(SSSRs) are useful feature
representations for speech quality
estimation

In our prior work [2], SSSRs are used
successfully for in non-intrusive
intelligibility prediction for the CPCI
challenge data

Specifically, the CNN Encoder
representations are useful

However, such models may generalize
poorly to unseen enhancement systems
and listeners
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[1]"Pre-trained Speech Representations as Feature Extractors for Speech Quality
Assessment in Online Conferencing Applications.” B. Tamm, H. Balabin, R.
Vandenberghe, H. Van hamme Interspeech 2022,

[2] “Non Intrusive Intelligibility Predictor for Hearing Impaired Individuals using
Self Supervised Speech Representations” G. Close, T. Hain and S. Goetze, 2023
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WHISPER ASR System

Sequence-to-sequence learning

EN 4% 0.0 | The |quick brown| ..

e Weakly supervised ASR model [3] X
. next-token
trained on 680,000 hours of data prediction
. . . . -\
e Time-domain signal is down-sampled = HE
| [ crossatenton ]
to 16 kHz and padded to 30 seconds | =
. c ;r—)
e Inputis the 80-channel log Mel 2 :
. . g (—%
Spectrogram, with a window of 25ms, s s WP Transformer
stride of 10ms : SRR e Blode
12 encoder layers, 12 decoder layers e
MLP
-
Decoder layers appeared tc? be more s =
useful than encoder layers in our el C)—*j ==
experiments 2x ConviD + GELU d Postional
N A Encoding
$ SOT| EN |Zane| 0.0 | The |quick| +..
[3]"Robust speech recognition via large-scale weak supervision.” . T ——

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, CHristine
Mcleavey, llya Sutskever, 2022.
Figure taken from [3]
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SLT
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e The model takes as input the output of each extractor it
Whisper decoder layer Encoder 1 | Decoder 1 —
e These are weighted and passed through a : T
. ; Encoder 12 | Decoder 12 —
BLSTM layer followed by a single attention head [, = /._|
to a single output neuron with a sigmoid Y J
. . . . weighted " weighted |
activation representing the predicted combination| | combination
. T decoder decoder
intelligibility layers layers
e We also use a a model feeding the output of the , C L*STM ' 1B L*STM |
. . . I- I-
attention head into an exemplar-informed e 2 g)l(mglglr-z:
module base attentlon | attention informed
pooling L pooling )
e The predicted intelligibility is the mean of the |
two model outputs. e;(\t:)rg&l:rj
fsigrr'\oid; _Asigin'oid

i, mean & i.
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Exemplar-Informed Module

output €

e Based on simulated human memory model [4]

e Incorporates a set of “exemplars”
o Labelled examples from the training data
e Output is a weighted combination of the

exemplar labels

similarity §

Benefits:
e Potential to easily adapt to new listeners/systems

Although it looked promising on the validation set, input exemplar  exemplar
. . . features features classes
there was little benefit on the evaluation set q T v

[4]"Minerva 2: a simulation of human memory.” D.
Hintzman, 1986
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Experiment Setup

e Validation sets for model selection:
o Disjoint validation sets: 2 listeners and 2 systems selected randomly from each
training split
o  Non-disjoint validation set: 10% of remaining training data (used for best epoch)
e For the final models, the disjoint validation sets were folded back into the

training data

The base and exemplar-informed systems are trained separately
e Sl model 1: Base:
o Trained for 25 epochs with batch size 8 and learning rate 10-5
e Sl model 2: Exemplar-informed:

o Trained for 50 epochs with batch size 8 and learning rate 2x10-6
o 8 exemplar randomly selected from the training data for each minibatch
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Results
e Lower performance on Split 1 Solit RMSE
o Enhancement System P validation evaluation
EOO1 very poor, outlier : 216 78 60
2 23.4 23.88
e Generalizes to unseen 3 797 2310
enhancement systems and Overall 22.5 25.32

listeners in both validation
and evaluation
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Analysis - RMSE by Correctness

35 A

e Good performance for
very high- and
low-intelligibility speech

e Poorer performance for g
medium-intelligibility R
speech 101

e Matches data availability 5 -

0 20 40 60 80 100
Correctness
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Analysis - RMSE by System

E001
35
e Poor performance on systems
with low mean correctness |
w oE038
. a E008_hr
e Performance on system EOOTis & i
particularly poor 4 o S
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Mean system correctness
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Analysis - Whisper Features

e Llayers/7and8 = spit1
I split 2
are preferred o= it 3

o
=
N

e Similar weights
learned for
different splits

Learned weight
e £

o
o
o

e Thisis consistent
with other work
which use
intermediate T e s
features

o
o
S

0.02 A

5 6 7 8 9 10 11 12
Whisper decoder layer
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Conclusions

e Pre-trained WHISPER decoder layers are a useful feature
representation for speech intelligibility prediction

e While the proposed system does generalize to unseen
enhancement systems, badly performing enhancement
systems are more difficult to predict accurately.

o This is an improvement over our prior work which
tended to overfit to the enhancement system

13
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Thank You!

Any Questions

rmogridgel@sheffield.ac.uk
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Analysis - Split 1

e Our model overestimates
the scores of EQOI

e Excluding EOO1 from
evaluation set results in
similar performance to
the other splits

Predicted
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