A Non-intrusive Binaural Speech Intelligibility Prediction for Clarity-2023

The 4th Clarity Workshop on Machine Learning Challenges for Hearing Aids (Clarity-2023)

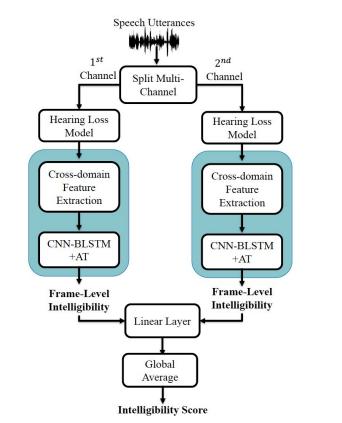
Katsuhiko Yamamoto Al Lab, CyberAgent, Inc.

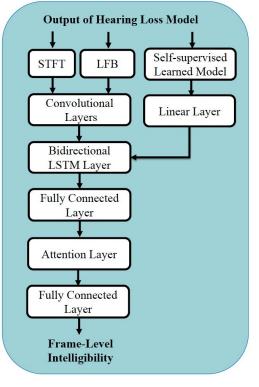
CyberAgent AlLab

Barker+ (2022)

1st Clarity Prediction Challenge (CPC1)

Tasks


data	speech enhancement method for CEC1	listeners' characteristics (e.g., audiogram)	Table 1: Evaluation of 15 submitted systems plus baseline for RMS prediction error (RMSE) and ground-truth vs prediction are shown for closed set (Track 1) are shown for closed set (Track 1) tr' Yes indicates an intrusive sys- ndly always guessing the mean of the mean of			ction		
Trackl	known	known				,		
Track2	unknown	unknown				an of		
					Track 1 (c	losed)	Track 2 (open)
			Entrant	Intr.	$RMSE \downarrow$	$\operatorname{Corr} \uparrow$	$RMSE \downarrow$	Corr ↑
Results		machine learning-based models	E30 [22]	Yes	$\textbf{22.5} \pm \textbf{0.5}$	0.79	_	_
Roodito			E32 [23]	Yes	23.1 ± 0.5	0.77	$\textbf{23.5} \pm \textbf{0.9}$	0.76
[E30] baseline + classification + non-linear regression		E29 [24]	No	23.3 ± 0.5	0.77	24.6 ± 1.0	0.73	
		E36 [25]	Yes	24.0 ± 0.5	0.76	29.2 ± 1.2	0.60	
[E32&E29] Transformer-based ASR		E33 [26]	No	24.1 ± 0.5	0.75	28.9 ± 1.1	0.65	
		E16 [26]	No	24.7 ± 0.5	0.74	30.7 ± 1.2	0.59	
[E36] baseline + Conformer + classification + SSL		E22 [27]	No	25.9 ± 0.5	0.70	32.1 ± 1.2	0.54	
			E19 [28]	Yes	27.5 ± 0.6	0.66	28.1 ± 1.1	0.63
• [E33&E16	6] CNN + BLSTM + self-	attention + SSL (MBI-Net)	Base. [1]	Yes	28.5 ± 0.6	0.62	36.5 ± 1.4	0.53


 [Baseline] a "better-ear" model of STOI with MSBG hearing loss (HL) model

MBI-NET

A non-intrusive SI prediction model for each ear

- Pre-processing
 - MSBG hearing loss (HL) model
- Input features for the DNN
 - spectrogram (STFT)
 - learnable filterbank (LFB)
 - self-supervised learned model (SSL)
- Outputs
 - frame-level SI (Left)
 - frame-level SI (Right)
 - frame-level SI (avg. of Left & Right)
 - SI (avg. of overall frames)

Edo-Zerario+ (2022)

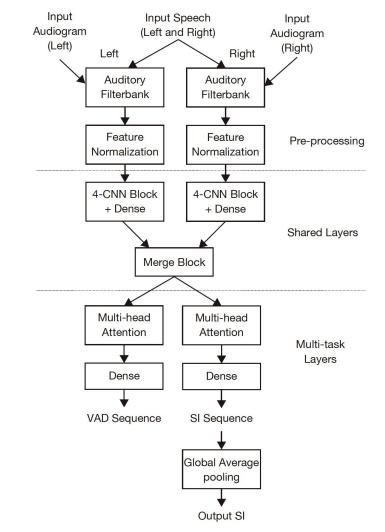
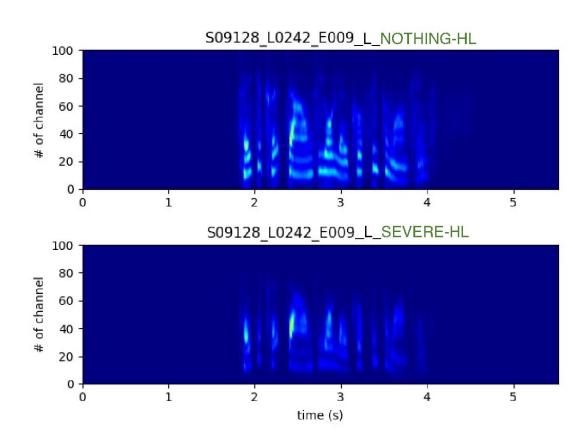

Figure 2: Illustration of extraction cross-domain feature and obtaining frame-level intelligibility score on CNN-BLSTM+AT architecture.

Figure 1: Architecture of the MBI-Net model.

Overview

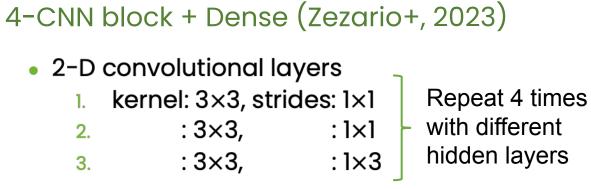
A non-intrusive SI prediction using binaural information

- Pre-processing
 - auditory filterbank with listeners' characteristics
 - feature normalizations
- Input features for the DNN
 - normalized auditory spectrogram
- Outputs
 - frame-level SI (Left)
 - frame-level SI (Right)
 - frame-level SI (avg. of Left & Right)
 - SI (avg. of overall frames)

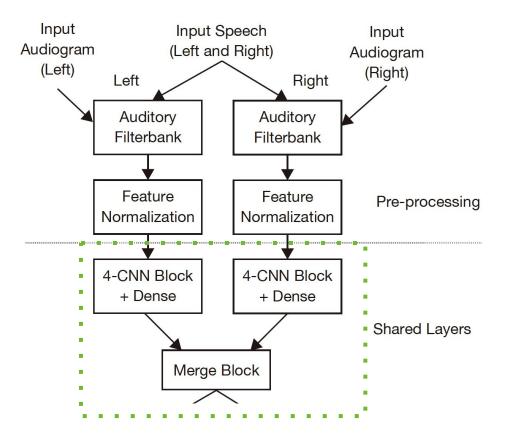

Pre-processing

A new version of Gammachirp filterbank (Irino, 2023)

- Level-dependent and non-linear processing
 - asymmetric filter shape
 - compression
- Two parameters for listeners' characteristics
 - audiogram
 - healthiness of the compression


Feature normalization (Andersen+, 2018)

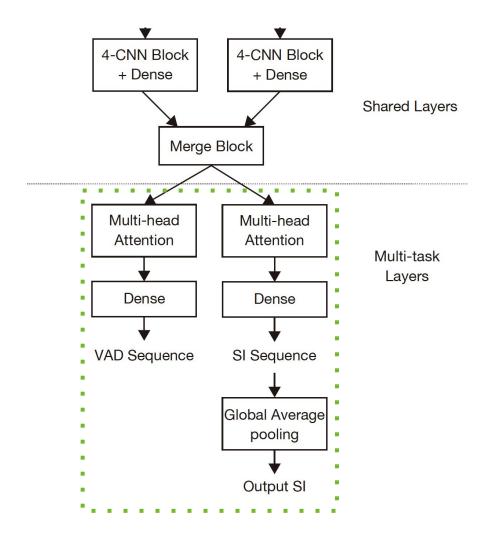
- Down-sampling to 10,000 Hz
- Normalizing with long-time frames (≈384 ms)
 - mean to 0
 - variance to 1


Shared Layers

- Flatten layer
- Dense layer

Merge block

- Concatenates Left and Right channels
- Fuses by a dense layer with 128 ReLU nodes
- Regularizes by a dropout layer

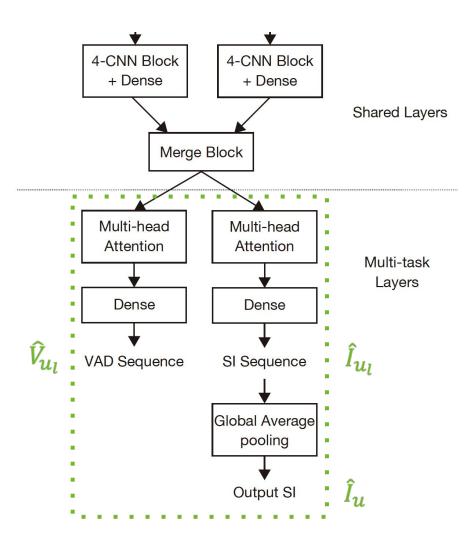

Multi-task Layers

Multi-task learning (MTL)

- MTL improves the prediction accuracy of each task
- Previous study uses for SI prediction models with:
 - speech quality
 - other objective metrics

MTL for the proposed model

- Tasks:
 - speech intelligibility (SI)
 - voice activity detection (VAD)
- Architectures:
 - multi-head attention
 - dense layer for output sequences
 - global average pooling for the single output SI


Chiang+ (2021)

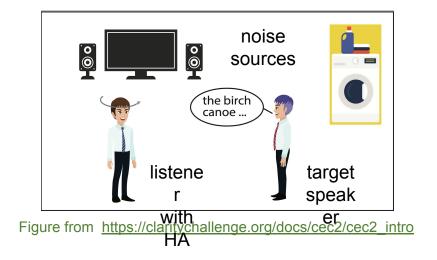
Objective Function

A Combination of SI and VAD

- Correct Labels
 - SI: speech intelligibility (utterance: I_u)
 - VAD: ideal duration of the target utterance (each frame: V_{t}
- Output of the model
 - SI: speech intelligibility (utterance: I_u & each frame: I_{u_l})
 - VAD: probability of the duration (each frame: \hat{V}_{u_l})

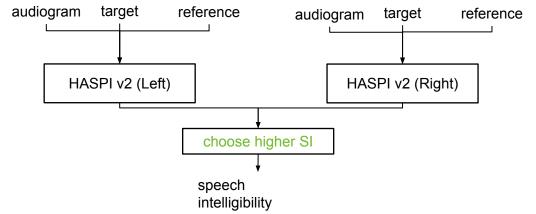
$$O = \frac{1}{U} \sum_{u=1}^{U} [(I_u - \hat{I}_u)^2 + \frac{1}{L_u} \sum_{l=1}^{L_u} (I_u - \hat{I}_{u_l})^2 - \frac{1}{L_u} \sum_{l=1}^{L_u} \{(V_{u_l} \log \hat{V}_{u_l}) + (1 - V_{u_l}) \log(1 - \hat{V}_{u_l})\}$$

binary cross-entropy


Experimental Set-Up

Dataset

- CEC2 (target of CPC2)
- CEC1


Separation of dataset

- Training: 90%
- Validation (Development): 10%

Baseline: a "better ear" model of HASPI version 2 (Kates & Arehart, 2021)

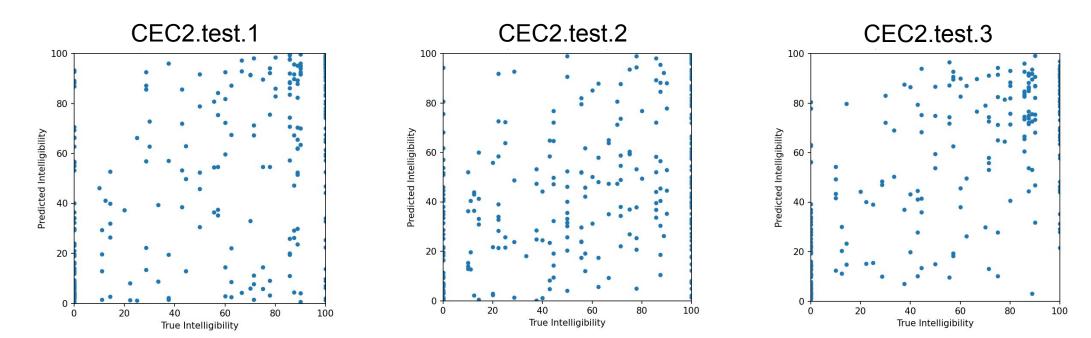
- inputs (left & right)
 - target speech signals
 - reference signals (clean speech)
 - audiogram
- output
 - higher SI chosen in left/right channels

Validation Sets

Prediction Models

- Baseline (HASPI version 2)
- Proposed (ours)

Evaluation Metrics


- RMSE (root-mean-squared error)
- NCC (normalized correlation coefficient)
- KT (Kendall's tau)

Our proposed model predicted SI with less RMSE than the baseline system.

Dataset	Model	RMSE ↓	NCC ↑	KT ↑
CEC2.train.1	Baseline	29.82	0.66	0.50
	Proposed	28.23	0.73	0.56
CEC2.train.2	Baseline	30.06	0.68	0.51
	Proposed	27.47	0.76	0.58
CEC2.train.3	Baseline	30.35	0.67	0.50
	Proposed	27.09	0.75	0.52
CEC1.train.1	Baseline	26.56	0.68	0.43
	Proposed	21.62	0.68	0.36
CEC1.train.2	Baseline	26.62	0.69	0.43
	Proposed	22.63	0.56	0.34
CEC2.train.3	Baseline	26.48	0.67	0.43
	Proposed	22.19	0.58	0.29

Test Sets for CPC2

Dataset	Model	RMSE ↓	NCC ↑	KT ↑
CEC2.test.1	Proposed	34.88	0.59	0.45
CEC2.test.2	Proposed	38.70	0.45	0.44
CEC2.test.3	Proposed	31.09	0.74	0.58

Discussions

Using output of auditory filterbank with audiograms

- It makes individual excitation patterns in humans' cochlea.
- The normalization process is also crucial for inputs of DNN-based models.

Combining binaural information in latent representations

- It is effective for the CEC2 dataset, including temporal changes due to head motions.
- It may be helpful to predict SI in more realistic environments.

Setting Multi-task Learning

• Other information (e.g., speech direction) may enable for more speech-focused learning.

To improve the prediction accuracy for test data:

- The training dataset should be manually separated for unknown conditions.
- The individual listeners' characteristics should be Embedded into the DNN.

Conclusions

A non-intrusive binaural speech intelligibility prediction model

- Auditory filterbank with hearing-impaired listeners' audiogram
- Combination of latent representations from left and right channel
- Multi-task learning with:
 - speech intelligibility prediction task
 - voice activity detection task

Experimental Results of the CPC2 Datasets

- Validation: The proposed model predicts SI with less RMSE than the baseline.
- Test: RMSEs of the predicted SI are 4-11% points higher than RMSEs for validation sets.

References

• Barker+ (2022)

Barker, J., Akeroyd, M., Cox, T.J., Culling, J.F., Firth, J., Graetzer, S., Griffiths, H., Harris, L., Naylor, G., Podwinska, Z., Porter, E., Munoz, R.V., The 1st Clarity Prediction Challenge: A machine learning challenge for hearing aid intelligibility prediction. *Proc. Interspeech 2022*, 3508-3512, 2022, doi: 10.21437/Interspeech.2022-10821

Edo-Zezario+ (2022)

Edo Zezario, R., Chen, F., Fuh, C.-S., Wang, H.-M., Tsao, Y., MBI-Net: A Non-Intrusive Multi-Branched Speech Intelligibility Prediction Model for Hearing Aids. *Proc. Interspeech 2022*, 3944-3948, 2022, doi: 10.21437/Interspeech.2022-10838

Irino (2023)

T. Irino, "Hearing impairment simulator based on auditory excitation pattern playback: WHIS," IEEE Access, doi: 10.1109/ACCESS. 2023.3298673, 2023.

Andersen+ (2018)

A. H. Andersen, J. M. de Haan, Z.-H. Tan, and J. Jensen, "Nonintrusive Speech Intelligibility Prediction Using Convolutional Neural Networks," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 26, no. 10, pp. 1925–1939, 2018.

• Chiang+ (2021)

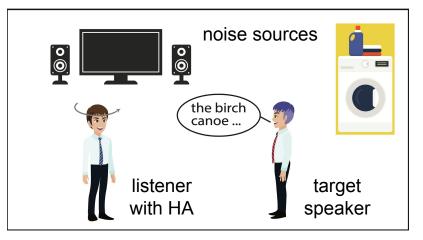
H.-T. Chiang, Y.-C. Wu, C. Yu, T. Toda, H.-M. Wang, Y.-C. Hu, and Y. Tsao, "HASA-Net: A Non-Intrusive Hearing-Aid Speech Assessment Network," in Proceedings of 2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp. 907–913, 2021.

• Kates & Arehart (2021)

J. M. Kates and K. H. Arehart, "The Hearing-Aid Speech Perception Index (HASPI) Version 2," Speech Communication, vol. 131, pp. 35–46, 2021.

2023/08/19

K. Yamamoto, Clarity-2023


Introduction

Clarity Project

- Clarity Enhancement Challenge (CEC) to improve speech intelligibility (SI) for hearing aids (HAs)
- Clarity Prediction Challenge (CPC) to improve prediction accuracies of SI processed by HAs

2nd Clarity Prediction Challenge (CPC2)

- Objective: predicting correct SI in CEC2 dataset
 - More varied noise sources
 - The listener turns their head during the talking
- Two types of system:
 - Intrusive system with a clean speech reference
 - Non-intrusive system without any reference

Architecture of the MBI-NET

- Left/Right ear
 - 1. MSBG Hearing Loss Model
 - 2. Extraction cross-domain features
 - Short-time Fourier's Transform (STFT)
 - Learnable filter banks (LFB)
 - Self-supervised learning model (SSL)
 - 3. Frame-level SI prediction
 - 4 CNN-block
 - BLSTM
 - Self-attention (AT)
- Fuse Left/Right ear
 - 1. Linear Layer
 - 2. Global Average Pooling
 - 3. Utterance-level SI prediction

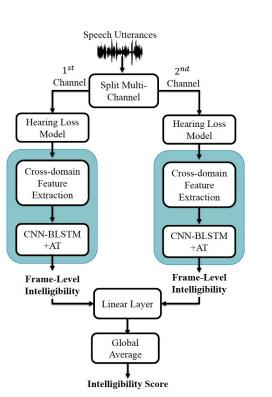


Figure 1: Architecture of the MBI-Net model.

Edo-Zerario+ (2022)

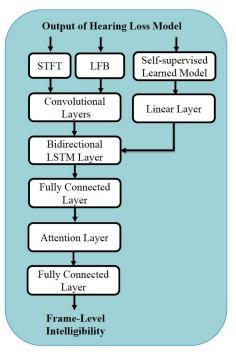


Figure 2: Illustration of extraction cross-domain feature and obtaining frame-level intelligibility score on CNN-BLSTM+AT architecture.

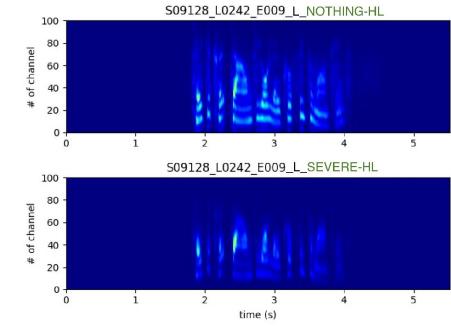
Experiments

Dataset	Dataset	Training	Development
 CEC2 (target of CPC2) 	CEC2.train.1	2449	272
• CEC1	CEC2.train.2	2501	277
	CEC2.train.3	2494	277
Separation of dataset	CEC1.train.1	5191	576
Training: 90%	CEC1.train.2	4774	530
 Development: 10% 	CEC2.train3	4598	510

Baseline: a "better ear" model of HASPI version 2 (Kates & Arehart, 2021)

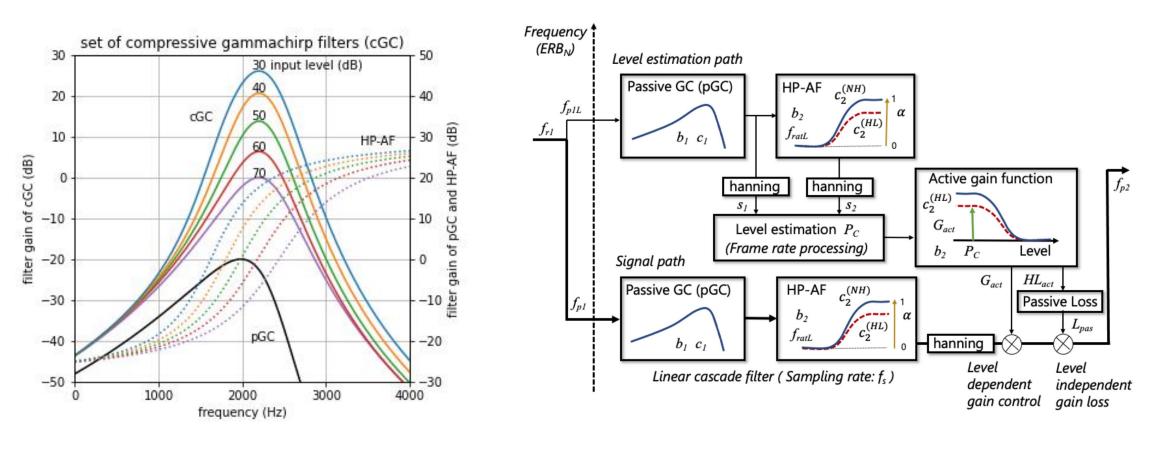
- inputs
 - speech signals (left & right)
 - reference signals (clean speech)
 - audiogram (left & right)
- output
 - higher SI chosen in left/right channels

Pre-processing


A new version of Gammachirp filterbank (Irino, 2023)

- Level-dependent and non-linear processing
 - asymmetric filter shape
 - compression
- Two parameters for listeners' characteristics
 - audiogram
 - health factor of the compression (0.00~1.00)

Feature normalization (Andersen+, 2019)


- Down-sampling to 10,000 Hz
- Normalizing with long-time frames (≈384 ms)
 - mean to 0
 - variance to 1

HI Listener's Class	Avg. of Listener's Audiogram (dB)	Health Factor of Compression
NOTHING	0.0~14.9	1.00
MILD	15.0~34.9	0.75
MODERATE	35.0~55.9	0.50
SEVERE	56.0~	0.25

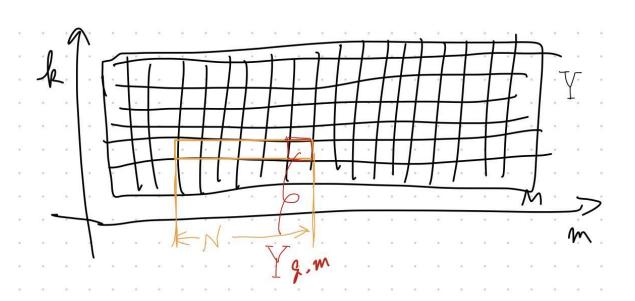
Irino (2023)

Gammachirp Filterbank (GCFB_{v23})

https://github.com/kyama0321/gammachirpy

FIG. 1. Block diagram of one channel of the frame-based GCFB, $GCFB_{v23}$

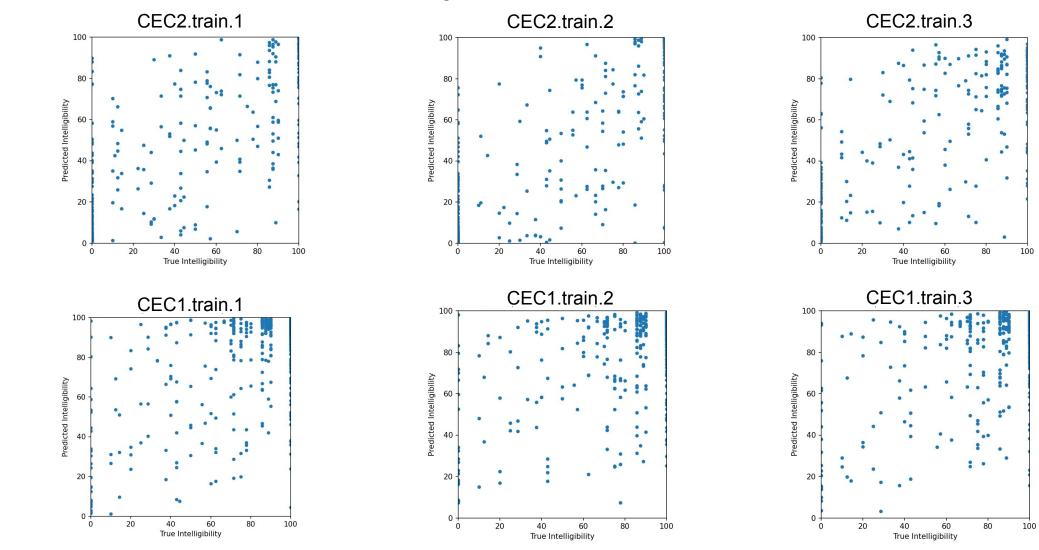
Normalization Process


The envelopes are mean- and variance normalized. We define the normalized envelope sample, $\bar{Y}_{q,m}$, by the two following steps:

$$\breve{Y}_{q,m} = Y_{q,m} - \frac{1}{N} \sum_{m'=m-N+1}^{m} Y_{q,m'},$$
(2)

for $m = N, \ldots, M$, and:

$$\bar{Y}_{q,m} = \frac{\breve{Y}_{q,m}}{\sqrt{\frac{1}{N}\sum_{m'=m-N+1}^{m}\breve{Y}_{q,m'}^2}},$$
(3)


for m = 2N - 1, ..., M, where $\check{Y}_{q,m}$ is a zero-mean intermediate variable, and $\bar{Y}_{q,m}$ is the normalized envelope. We use N = 30 envelope samples (corresponding to 384 ms) to estimate the mean and variance. The resulting normalized envelopes are defined for Q = 15 one-third octave bands, and for L = M - 2N + 2 time windows.

an envelope spectrogram in time-frequency domain

Scatter Plots of the Proposed Model

K. Yamamoto, Clarity-2023

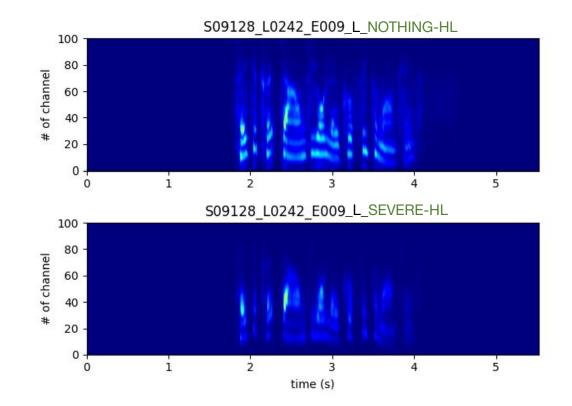
MBI-Net vs. Proposed Model

Prediction Models

- MBI-Net with WavLM (Zezario+, 2022)
- Proposed: ours

Evaluation Metrics

- RMSE (root-mean-squared error)
- NCC (normalized correlation coefficient)
- KT (Kendall's tau)


Dataset	Model	RMSE ↓	NCC ↑	KT ↑
CEC2.train.1	MBI-Net	29.47	0.70	0.55
	Proposed	28.23	0.73	0.56
CEC2.train.2	MBI-Net	29.04	0.73	0.56
	Proposed	27.47	0.76	0.58
CEC2.train.3	MBI-Net	28.25	0.72	0.52
	Proposed	27.09	0.75	0.52
CEC1.train.1	MBI-Net	20.62	0.70	0.40
	Proposed	21.62	0.68	0.36
CEC1.train.2	MBI-Net	20.48	0.62	0.32
	Proposed	22.63	0.56	0.34
CEC2.train.3	MBI-Net	21.06	0.59	0.31
	Proposed	22.19	0.58	0.29

Discussion

- SSL features help SI prediction accuracy for the CEC1 dataset (Zezario+, 2022).
- More implementation is needed for the CEC2 dataset (adaptation for temporal changes?)

Pre-processing part

2023/08/19