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Introduction

* An accurate metric for predicting speech intelligibility is crucial to assess the
performance of applications related to speech.

* The most direct measure of speech intelligibility is the subjective listening test.

« However, such tests are costly and less practical.
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Introduction

» With the emergence of deep learning models, several studies have successfully adopted
these models to create automatic speech intelligibility prediction models:

1. Non-intrusive speech intelligibility prediction using convolutional neural network [1]
2. STOI-Net: A deep learning based non-intrusive speech intelligibility assessment mode [2]

3. Deep Learning-Based Non-Intrusive Multi-Objective Speech Assessment Model With Cross-Domain
Features [3]

4. Exploiting Hidden Representations from a DNN-based Speech Recogniser for Speech Intelligibility
Prediction in Hearing-impaired Listener [4]

5. MBI-Net: A Non-Intrusive Multi-Branched Speech Intelligibility Prediction Model for Hearing Aids [5]
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Introduction

* In this challenge, owing to the notable performances demonstrated by MBI-Net [5], our
objective is to present an enhanced version of MBI-Net by proposing MBI-Net+ and MBI-
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MBI-Net+
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MBI-Net++
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Experiments

Experimental Setup

* The Clarity Prediction Challenge (CPC) dataset for 2023 comprises numerous systems
carried over from the preceding Clarity Enhancement Challenge in 2022.

 To elaborate, this dataset is categorized into three distinct tracks, and from within these
tracks, we employ three speech assessment models.

« Additionally, our model was trained entirely on the CPC 2023 dataset while
simultaneously deploying the MBI-Net+ and MBI-Net++ models.

L A
¥ ACADEMIA SINICA




Experiments

Experimental Results

RMSE: Root Mean Square Error
STDERR: Standard Deviation Error
LCC: Linear Correlation Coefficient

Table 1: RMSE and LCC scores of MBI-Net+ and MBI-Net++
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Systems Total Params || RMSE LCC
MBI-Net+ 3,441,863 26.79 0.754
MBI-Net++ 3.540,686 26.39 0.763
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