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Abstract
Improving the effectiveness of hearing aid (HA) devices in

assisting users to understand speech in noisy surroundings is
of utmost importance. To achieve this, it is critical to create a
metric that can accurately forecast speech intelligibility for HA
users. In our previous research, we introduced a non-intrusive
multi-branched speech intelligibility prediction model known as
MBI-Net. Building upon the promising outcomes of MBI-Net,
our goal is to further enhance its performance by incorporating
a pre-trained weakly supervised model called Whisper to en-
rich the acoustic features. We propose two versions of MBI-Net
with these enhancements, namely MBI-Net+ and MBI-Net++.
MBI-Net+ maintains the same model architecture as MBI-Net,
featuring two branches, each consisting of a hearing loss model,
a cross-domain feature extraction module, a task-specific layer,
and a linear layer that produces the final output. Unlike the orig-
inal MBI-Net, which relies on a self-supervised learning (SSL)
model for deploying cross-domain features, MBI-Net+ adopts
Whisper to deploy the acoustic features. Similarly, MBI-Net++
also employs Whisper for deploying the cross-domain features
but with a more elaborate design, consisting of two branches,
where each branch aims to predict the frame-level scores of in-
telligibility and HASPI (Hearing Aid Speech Perception Index),
respectively. The predicted frame-level scores from each corre-
sponding score are concatenated and fused using two different
linear layers to produce the final prediction scores for intelligi-
bility and HASPI.
Index Terms: speech intelligibility, hearing aid, hearing loss,
self-supervised learning, cross-domain features

1. Introduction
An accurate metric for predicting speech intelligibility is cru-
cial to assess the performance of applications related to speech.
The most reliable and straightforward approach to conducting
evaluations is by conducting human listening tests. However,
such tests are costly and less practical. With the emergence of
deep learning models, several studies have successfully adopted
these models to create automatic speech intelligibility predic-
tion models [1, 2, 3, 4].

In the field of predicting speech intelligibility for hearing
aids, various approaches have demonstrated strong predictive
performance. For example, in [3], the utilization of hidden
layer representations from automatic speech recognition (ASR)
models as acoustic features for predicting speech intelligibil-
ity scores is elaborated. Furthermore, [4] presents a multi-
branched speech intelligibility prediction model (MBI-Net), in
which each branch comprises a hearing loss model, a cross-
domain feature extraction module, and layers of convolutional
neural network-bidirectional long-short term memory with at-
tention mechanism (CNN-BLSTM-ATT). The outputs of these

branches are then concatenated and fused in a linear layer to
produce the final prediction performance.

In this challenge, owing to the notable performances
demonstrated by MBI-Net [4], our objective is to present an en-
hanced version of MBI-Net. This enhancement involves lever-
aging a weak-supervision model, namely Whisper [5], to utilize
acoustic features. The initial enhanced version of MBI-Net, re-
ferred to as MBI-Net+, maintains the same model architecture
as the original MBI-Net. This architecture employs a multi-
branched module that combines the outputs of each branch as
input for the linear layer, which calculates the final intelligibil-
ity score. However, unlike the original MBI-Net, MBI-Net+
combines power spectral (PS), learnable filterbank (LFB), and
Whisper to deploy cross-domain features, while the original
MBI-Net uses a combination of PS, LFB, and a pre-trained self-
supervised learning (SSL) model for feature deployment.

For the subsequent system, named MBI-Net++, Whisper
is also utilized for deploying cross-domain features. However,
MBI-Net++ employs a more intricate design, consisting of two
branches, where each branch is dedicated to task-specific mod-
ules that forecast frame-level scores of intelligibility and the
Hearing Aid Speech Perception Index (HASPI). The projected
frame-level scores from each corresponding predicted scores
are concatenated and merged through two distinct linear layers.
These layers generate the final prediction scores for both intel-
ligibility and HASPI. Experimental results confirm that MBI-
Net++, which employs the HASPI score as additional infor-
mation, can achieve an overall better root-mean-square-error
(RMSE) and correlation score.

2. Proposed Systems
In this section, we present two proposed systems for the chal-
lenge: MBI-Net+ (E016) and MBI-Net++ (E023). For the MBI-
Net+ model, the overall architecture of MBI-Net+ is depicted
in Fig. 1. As illustrated in the figure, given dual-channel ut-
terance, the audio undergoes processing by the MSBG hearing
loss model [6, 7]. This processing modifies the speech signal
according to the HA pattern and acts as a simulator to mimic
the hearing ability of HA users. The simulated audio from
the MSBG hearing loss model is subsequently split into two
monaural speech signals, with the first and second channels cor-
responding to the left and right ears, respectively.

Following this, the first and second audio channels are pro-
cessed by task-specific layers, which consist of cross-domain
feature extraction and the CNN-BLSTM-ATT layer. These lay-
ers aim to predict frame-level intelligibility scores from the first
and second channels, respectively. The detailed mechanism of
the cross-domain feature extraction process is depicted in Fig.
2. This feature extraction module is composed of three com-
ponents: (1) spectral features, obtained by converting speech
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Figure 1: Architecture of the MBI-Net+ model.

waveforms through the short-time Fourier transform (STFT);
(2) learnable filter bank (LFB) features [8]; (3) latent represen-
tations from the weakly supervised Whisper model [5].

Finally, the predicted frame-level intelligibility scores from
the two branches are combined using a linear layer and global
average pooling to obtain the final speech intelligibility score.
To enhance training stability, the objective function for train-
ing MBI-Net+ comprises both frame-level and utterance-level
scores, combined as follows:

O = 1
U

U∑
u=1

[(Iu − Îu)
2 + αm

Fu

Fu∑
f=1

(Iu − ˆimf )
2]+

Lleft + Lright

Lleft =
αl
Fu

Fu∑
f=1

(Iu − ˆilf )
2

Lright =
αr
Fu

Fu∑
f=1

(Iu − ˆirf )
2

(1)

where the terms Lleft and Lright represent the frame-level loss
associated with the left and right branches (referring to the ears).
The symbols Iu, Îu denote the actual and predicted intelligibil-
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Figure 2: Illustration of extraction cross-domain feature and
obtaining frame-level intelligibility score on CNN-BLSTM+AT
architecture.

ity scores at the utterance level. The variable U denotes the total
count of training utterances, while Fu represents the number of
frames in the u-th training utterance. Additionally, ˆimf , ˆilf ,
and ˆirf denote the predicted frame-level intelligibility scores of
the main branch, left branch, and right branch respectively, for
the f -th frame. The coefficients αm, αl, and αr determine the
balance between the losses at the utterance and frame levels.

Furthermore, the architecture of the MBI-Net++ model
is depicted in Figure 3. In general, MBI-Net++ adopts the
same model architecture as the MBI-Net+ model. Additionally,
within each task-specific layer, this module doesn’t solely pre-
dict frame-level intelligibility scores, but also predicts frame-
level HASPI scores. We assume that the supplementary infor-
mation from HASPI might enhance the model’s overall gen-
eralization capability. Subsequently, the corresponding frame-
level scores are combined and integrated through two linear lay-
ers. This combination generates the final predictive scores for
both intelligibility and HASPI ratings. The training objective
for MBI-Net++ is defined as follows:

O = LInt + LHASPI
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1
U
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2]+
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(2)
where Lleft−int and Lright−int represent the frame-

level loss of the left branch and right branch for estimat-
ing frame-level intelligibility, respectively; Lleft−HASPI and
Lright−HASPI represent the frame-level loss of the left branch
and right branch for estimating frame-level HASPI, respec-
tively. {Hu, Ĥu, ˆhmf} denote the true utterance level score,
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Figure 3: Architecture of the MBI-Net++ model.

predicted utterance-level score, and predicted frame level score
of the HASPI, respectively.

3. Experiments
In this section, we present the experimental setup and results of
MBI-net+ and MBI-Net++ on the Clarity Prediction Challenge
2023 dataset.

3.1. Experimental Setup

The Clarity Prediction Challenge (CPC) dataset for 2023 com-
prises numerous systems carried over from the preceding Clar-
ity Enhancement Challenge in 2022. To elaborate, this dataset
is categorized into three distinct tracks, and from within these
tracks, we employ three speech assessment models. Addition-
ally, our model was trained entirely on the CPC 2023 dataset
while simultaneously deploying the MBI-Net+ and MBI-Net++
models. Two evaluation metrics, namely root mean square error
(RMSE), and linear correlation coefficient (LCC), were used to
evaluate the performance of MBI-Net. Lower RMSE indicates
that the predicted scores are closer to the ground-truth scores
(lower is better). In contrast, a higher LCC score indicates that
the predicted score has a higher correlation to the ground-truth

Table 1: RMSE and LCC scores of MBI-Net+ and MBI-Net++

Systems Total Params RMSE LCC
MBI-Net+ 3,441,863 26.79 0.754

MBI-Net++ 3,540,686 26.39 0.763

score (higher is better).

3.2. Experimental Results

As indicated in Table 1, both MBI-Net+ and MBI-Net++
demonstrate the capability to attain notably low RMSE scores.
This achievement underscores the advantage of incorporating
Whisper for the deployment of cross-domain features. Inter-
estingly, through the utilization of supplementary information
from the HASPI score, MBI-Net++ achieves superior perfor-
mance when contrasted with the MBI-Net+ model.

4. Conclusion
In this Clarity Prediction Challenge 2023, we have proposed
two novel systems which leverage the acoustic features from
Whisper, namely, MBI-Net+ and MBI-Net++. By leveraging
Whisper embedding feature to deploy cross-domain features,
our proposed systems can notably maintain a low RMSE score.
In addition, by incorporating HASPI as an additional assess-
ment metric, MBI-Net++ can achieve overall better prediction
performance than the MBI-Net+ model.
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