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Abstract 

This paper describes a system developed at UCL for the second 

Clarity Prediction Challenge. The system combines 

information about: signal acoustics from the STOI metric, 

phonetics from phone lattice comparison, linguistics from a 

language model, and audiometric data from pure-tone 

thresholds. A non-linear regression model based on these 

features showed an RMS prediction error of 22.4% on the 

training set compared to a baseline of 26.4% using the STOI 

metric alone. On the challenge evaluation set, the model had an 

error of 25.36%. 

1. Introduction 

The second Clarity Prediction Challenge [1, 2] was an open 

competition to compare the performance of speech 

intelligibility metrics on a common dataset. The materials for 

the prediction challenge were generated from previous 

enhancement challenges in which teams competed to process 

noisy speech for known hearing-impaired (HI) listeners. The 

goal of the prediction challenge was to predict the intelligibility 

of some held-out enhanced sentences by these listeners. 

Our intelligibility prediction model builds on the success of 

our system entered for the first prediction challenge [3]. In this 

submission we continue to use the STOI metric broken out 

across frequency channels, a scene analyser for characterising 

the enhancement system, a language model for estimating the 

probability for sentences, and a speaker recogniser for 

characterising the talker. We continue to use a small neural 

network to train a non-linear regression model to predict 

intelligibility from combinations of the available features. 

Innovations in this submission include: calculating the 

STOI best ear over time to allow for listener head rotation; the 

use of a phonetic recogniser to compare phone hypotheses 

between reference and target audio; and the direct use of pure-

tone thresholds to characterise listeners. 

Section 2 describes the methods used to extract the new 

features, while readers are referred to our previous paper [3] for 

descriptions of the features carried over to this study. Section 3 

provides metric performance results for baseline measures and 

the features. 

2. Methods 

2.1. Two-Ear STOI 

In the earlier study, we computed the STOI metric [4, 5] from 

the reference and target audio to find the “best ear” and 

represented the STOI outcome as a vector of 15 correlations, 

one per frequency channel. Since the second enhancement 

challenge allowed for listener head rotation, instead we 

computed the table of STOI correlations for each ear separately 

and then computed the “best ear over time” from the maximum 

in each time-frequency cell across the ears before the mean is 

taken over time within each channel. 

2.2. Phone lattice comparison 

To compare the phonetic properties of the reference and target 

sentence, we introduce a phonetic recogniser trained on British 

English to deliver a phone lattice for each signal and compute a 

correlation. The phone recogniser is based on a publicly 

available pre-trained DNN model WAV2VEC2-XLSR [6] 

which takes an input audio waveform and delivers feature 

vectors every 20ms. These feature vectors have been optimised 

for multi-lingual speech recognition. This model is then fine-

tuned on the WSJCAM0 corpus of British English [7] to deliver 

softmax outputs over a 45-member phone set.  

For use in the model, the frame logit scores for the phones 

are summed into 15 values representing Voice, Place and 

Manner (VPM) features (voice: 2 features, place: 6 features, 

manner: 6 features, silence: 1 feature). The correlations 

between the time series for each VPM feature across the 

reference and target sentences are then computed for use in the 

model. 

2.3. Pure-tone thresholds 

In the first prediction challenge, there was a closed set of 

listeners, so we were able to use the listener identity in the 

model. Since an aim in this challenge is to test generalisability, 

here we used instead the average pure-tone thresholds across 

left and right ears to characterise the listener. 

3. Results 

3.1. Baseline Models 

To better understand the performance of our regression model 

we implemented four baseline models for predicting % correct 

from the supplied data: 

NULL – a single % correct prediction based on the mean 

score over all scenes, listeners and systems. 

LISTENER – a single % correct prediction for each listener, 

based on their mean performance over all scenes and systems. 

SYSTEM – a single % correct prediction for each system, 

based on their mean performance over all scenes and listeners. 

STOI – a regression model that predicted proportion of 

words correct from the reference and processed audio alone 

using the STOI metric (from the better ear). The STOI metric 

value was converted to a proportion correct score using logistic 

regression weighted by the number of words in each sentence. 



The regression model was fitted and tested on the training set 

using 5-fold cross-validation. 

Average performance of these baseline models across the 

three training subsets is shown in Table 1. The RMS prediction 

error of 26.4% using STOI on the best ear provides a good 

estimate of the prediction error found using a current state of 

the art approach. 

Table 1. RMS error for baseline predictors 

Baseline method RMS Prediction Error (%) 

 Training Sets Average 

NULL 38.307 

LISTENER only 37.311 

SYSTEM only 29.825 

STOI best ear 26.369 

3.2. Input Features 

The following features were used to construct a regression 

model to predict percentage correct intelligibility: 

STOI2EAR (15 features) – STOI correlations between 

source and processed audio per filter channel. The target and 

processed signals are first aligned by spectral cross-correlation 

[8] before calculation of the STOI correlations separately for 

each ear. The set of correlations is chosen from the best time-

frequency cell correlations across the two ears. 

LATTICE (15 features) – phone lattice correlations. The 

time aligned signals are processed into phone lattices by the 

recogniser, and the section containing speech is identified from 

the reference audio. The logit scores from that section are then 

summed into 15 VPM features and correlations between 

reference and target are computed for each feature.  

SYSTEM (20 features) – predicted identity of the 

processing system found by the scene classifier in each training 

data subset, one probability per system. Note that only 17 

systems are present in each training subset. 

SPROB (11 features) – prompt sentence text probability 

and length. The probability is calculated from word trigram 

frequencies of the words in the prompt in the British National 

Corpus. The value is the mean log probability of the words in 

the prompt given their frequency of occurrence in trigrams that 

include the previous and following word. The SPROB value 

was z-score normalized before presentation to the model. The 

sentence length is represented in a unary code of 10 features. 

PTA (8 features) – pure tone thresholds at 8 frequencies for 

the listener averaged over left and right ears. This is generated 

from the given metadata. 

TALKER (6 features) – predicted identity of the talker of 

the sentence found by the scene classifier, one probability per 

talker. 

The regression model was implemented as a simple neural 

network with two hidden dense layers of 64 and 32 nodes. Input 

was a single vector of concatenated features taken from the sets 

above. Output was a single sigmoidal node with an output 

between 0 and 1 representing the proportion of words correctly 

identified in the sentence. The model was trained using a binary 

cross-entropy loss function. Separate models were trained for 

each training subset and the held-out portion was used to 

terminate training. 

3.3. Model Evaluation 

To determine the relative importance of the feature sets, a 

greedy algorithm was used to find the first most useful, then the 

best two, the best three and so on. Table 3 shows how RMS 

prediction error reduces on the training data (with 5-fold cross-

validation) as each feature is introduced in turn. 

Table 2. RMS error for non-linear regression model 

Feature set RMS Prediction Error (%) 

 Training Sets Average 

STOI2EAR alone 25.972 

+ LATTICE 25.344 

+ SYSTEM 23.758 

+ SPROB 23.257 

+ PTA 22.490 

+ TALKER 22.399 

 

On the training data, STOI2EAR provides a 0.4% improvement 

in RMSE over the standard STOI metric alone. The phonetic 

lattice features improves performance by 0.6% and the system 

prediction features improves performance by a further 1.6%. 

Adding the linguistic sentence probability features improves 

performance by 0.5%, while adding the audiometric PTA 

features gave a further improvement of 0.7%. The talker 

identity features only made a small improvement of about 0.1%.  

In terms of computational load, the calculation of the STOI 

metric, system characterisation, sentence probability, pure-tone 

average and talker identity features takes less than 1s per file on 

a modern CPU. The largest computational load is the generation 

of the phone lattices, which requires a GPU. Using an NVIDIA 

Quadro P5000 GPU, lattices took about 1s each to generate. 

Overall the system is working at about 1x real-time. 

4. Discussion 

The model is operating about 0.4% RMSE worse than the 

model used in CPC1 [3], this is probably because of the 

increased variability in the CEC2 task. To reiterate a point made 

in [3], while this model has features which explicitly attempt to 

identify the processing system and the talker identity, the same 

information is undoubtedly available implicitly in CPC2 

systems which map the audio to intelligibility score directly. 

Further work could investigate how phonetic recognition is 

affected by individual listeners’ impairments, as this might lead 

to a metric which is more sensitive to the particular listening 

problems of individuals.  
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