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Abstract
We present a method for non-intrusive speech intelligibility
prediction leveraging temporal and hierarchical features from
noise-robust speech foundation models. First, a temporal trans-
former is applied along the time axis to sequences of represen-
tations obtained at each layer of the foundation model. The
resultant features are then averaged along the time axis, yield-
ing one embedding per layer. Next, a layer-wise transformer
is applied to the set of layers’ representations to derive multi-
level features. The resulting sequence is averaged along the
layer axis. This pipeline is applied to each channel of the bin-
aural signal, obtaining one embedding per channel. To account
for non-linear binaural interactions, each transformer block has
a cross-attention layer between the two channels. Finally, the
embeddings from both channels are averaged, yielding the final
representation used to predict the percentage of correctly rec-
ognized words in the utterance through a linear projection. Pre-
dictions are conditioned on the listener’s audiogram, treated as
an additional layer before the layer-wise transformer. We per-
formed experiments using the CPC2 dataset with Whisper and
WavLM as backbones. Our results show significant improve-
ments over the baseline model.
Index Terms: non-intrusive intelligibility prediction, speech
foundation models, hierarchical model

1. Introduction
Recently it was shown that Whisper [1], an ASR model trained
with a 680k hour labeled speech corpus recorded in diverse con-
ditions, captures in its representations rich linearly-accessible
information from the background noise present in speech utter-
ances [2]. The authors suggested that recognizing speech con-
ditioned on the noise type is the mechanism behind Whisper’s
widely noted noise-robust ASR performance.

Motivated by this finding, we hypothesized that by leverag-
ing such representations, which effectively exhibit a disentan-
glement of signal and noise, we could build models with im-
proved performance on non-intrusive intelligibility prediction.
This would be achieved by bringing the non-intrusive setup
closer to the intrusive setup, in which separation of signal and
noise is assumed to be given.

In this work we propose a model inspired by two key in-
sights from [2]:

a) Noise-robust foundation models seem to exhibit disen-
tanglement of signal and noise in its representations.

b) At least in Whisper, noise information is distributed
across multiple layers of the model.

Based on a) we used Whisper and WavLM [3] to extract speech
features. WavLM was not among the models studied in [2],
however we included it because its training involves a denoising

task with diverse noise sources, which we speculate could also
promote noise-signal disentanglement. Its strong performance
on diarization and separation tasks [3] could be evidence of it.
To tackle b) we used a model with an architecture similar to the
Tl-Tr model proposed in [2], in which transformers [4] across
time and layers are used for feature extraction.

2. Model
Our model is illustrated in Figure 1. Each audio channel from
the binaural signal is processed by a noise-robust foundation
model with L layers, yielding a sequence of representations at
each layer for each channel. Sequences are shortened along the
time axis by applying average pooling with a kernel width of 20
and stride of 20. Next, embeddings are linearly projected to a
384-dimensional space. Shortening and dimensionality reduc-
tion are performed to reduce computational costs. After tem-
poral pooling, a single-head temporal transformer with internal
dimension 384 is applied at each layer, producing sequences
of contextual features. Global average pooling is then applied
along the time axis to each layer’s contextual sequence, result-
ing in a single 384-dimensional embedding per layer. Layer rep-
resentations are concatenated, forming an L×384-dimensional
tensor. At this point, we inject the listener’s information by
linearly projecting the audiogram to a 384-dimensional space
and concatenating it with the layers’ representations across the
layer axis. The sequence is used as input for a single-head
layer transformer, yielding an (L+ 1)× 384-dimensional ten-
sor of multi-level features. The sequence is compressed again
by global average pooling, resulting in a final 384-dimensional
representation per channel. The two channels’ representations
are averaged and linearly projected to produce the correctness
prediction. We use a sigmoid layer at the output to bound the
predictions between 0% and 100%.

To allow for non-linear binaural interactions, each trans-
former block has a cross-attention layer between the output of
its self-attention layer and the output of the self-attention layer
at the same level in the other channel’s transformer block (Fig-
ure 1, right).

The parameters of the foundation model are frozen during
training. All the trainable parameters are shared between audio
channels and the parameters of the temporal transformer and the
linear projection for dimensionality reduction are also shared
across layers.

3. Experimental setup
We performed experiments with two foundation models: Whis-
per LARGE and WavLM LARGE. For each model we ran 3 in-
dependent experiments with different random seeds on each of
the training data sets (train.1, train.2 and train.3).
For train.1 we used as validation set the samples from the
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Figure 1: Model architecture. With the exception of the blocks in grey, blocks with the same color indicate shared parameters. Left:
Pipeline applied to each channel of the binaural signal to obtain one representation per channel. The representations from both
channels are then averaged and linearly projected to predict the intelligibility score. Right: Transformer binaural block used in the
temporal and layer transformers. The cross-attention layer enables modeling of non-linear binaural interactions.

CEC2 challenge from train.2. Similarly, for train.2 we
used the CEC2 samples from train.3, and for train.3 the
ones from train.1.

All models were trained to minimize a Huber loss for
80,000 steps using the Adam optimizer [5] with a learning rate
of 3e−5, β1 = 0.9, β2 = 0.98, and a batch size of 160. We
used a cosine learning rate schedule with a linear warm-up of
2000 steps. To all transformer layers we apply dropout [6] with
p = 0.1. A training run takes roughly 9.3 hours on a single
node with an NVIDIA A100-80 GB GPU and it requires about
18.4 GB of GPU memory when using Whisper features (inner
dimension d = 1280), and 14.4 GB when using WavLM fea-
tures (inner dimension d = 1024).

4. Results and analysis
Table 1 shows the results on the validation set for each of the
training splits. We compare our results with the CPC2 baseline,
a logistic regression model that maps HASPI [7] scores onto
correctness values. Note that the results given for the baseline
are from training it on what would normally be the validation
set. For example, the results reported for train.1 are for a
baseline system trained on the CEC2 samples from train.2,
which is the validation set for train.1 on the other models.
Therefore, the out-of-training scores for the baseline are likely
worse, and the ones displayed are likely overly optimistic. We
also report results for an ensemble model in which the pre-
dictions from the best-performing WavLM and Whisper based
models are combined using a weighted average to compute the
final prediction. The weights are optimized on each training set.

Overall, the results show a significant improvement using
our model compared to the baseline. Models with the WavLM
backbone outperform those with Whisper in most cases, pro-
viding further evidence that WavLM has comparable or better
signal-noise disentanglement capabilities compared to Whisper.
However, it should be noted that models with WavLM exhibit
higher variance in performance. The ensemble shows the best
performance, possibly indicating that Whisper’s and WavLM’s

representations differ in a way that allows them to compensate
for each other’s biases to some degree.

5. Conclusion
We proposed a model based on extracting temporal and hier-
archical features from noise-robust speech foundation models
exhibiting signal-noise disentanglement. Results show that our
model consistently and significantly outperforms the baseline.
Furthermore, WavLM outperforms Whisper as a backbone, sug-
gesting it may have better signal-noise disentanglement. This
should encourage further research into using WavLM as back-
bone for tasks like audio event tagging, where currently Whis-
per is state-of-the-art. An ensemble of models using both back-
bones performed best, and was used for our final E011 sub-
mission. Preliminary studies suggest the proposed multi-level
feature extraction and binaural cross-attention meaningfully im-
pact performance. We leave ablation studies and detailed anal-
yses and benchmarking for future work.

Table 1: Results on the validation set for each train split in
terms of RMSE and normalized cross correlation (NCC).

Model Split RMSE NCC

Baseline
train.1 29.819 0.663
train.2 30.060 0.677
train.3 30.350 0.665

Whisper
train.1 24.249± 1.106 0.812± 0.017
train.2 23.164± 0.144 0.823± 0.010
train.3 22.457± 0.496 0.838± 0.011

WavLM
train.1 23.796± 2.447 0.818± 0.037
train.2 23.466± 0.281 0.827± 0.004
train.3 21.588± 0.648 0.848± 0.007

Ensemble
train.1 21.069 0.857
train.2 20.836 0.866
train.3 19.284 0.877
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