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Abstract
A non-intrusive speech intelligibility (SI) prediction method is
proposed for the second Clarity Prediction Challenge (CPC2).
The model employs self-attention mechanisms and two types of
multi-task learning to estimate speech segments and predict the
SI of a target speech without the corresponding reference signal.
The shared layer consists of latent representations of a deep neu-
ral network extracted from outputs of non-linear auditory filter-
banks with individual hearing-impaired listeners’ audiograms.
Evaluation results with the development dataset for CPC2 show
the proposed method outperforms the baseline, which needs the
corresponding reference signal.
Index Terms: binaural speech intelligibility prediction, audi-
tory model, deep-neural network, multi-task learning

1. Introduction
The Clarity Prediction Challenge (CPC) aims to investigate
speech intelligibility (SI) prediction methods for enhanced
speech through hearing-impaired (HI) listeners. In the second
challenge (CPC2), the committee provides a dataset, including
binaural audio processed by hearing aids (HA) for speech-in-
noise, the corresponding clean reference speech signals, listen-
ers’ characteristics, and measured SI scores from listening tests.

This report proposes a non-intrusive SI prediction model
with auditory-based binaural processing and deep neural net-
work (DNN) architecture that directly converts acoustic repre-
sentations from an auditory filterbank to the SI scores.

2. Proposed model
Figure 1 shows the overall architecture of the proposed model.
Inputs of the proposed model are a stereo-enhanced speech pro-
cessed by hearing aids and a listener’s audiogram. The output is
the predicted SI score of the input signal. The model has three
stages: a pre-processing part, a shared layer, and a multi-task
layer.

2.1. Pre-processing part

The input stereo speech signal is separated into the left and right
channels and temporarily upsampled to 48, 000 Hz. An imple-
mentation version of the Gammachirp filterbank analyzes each
monaural signal based on the characteristics of a HI listener and
decomposes it into frame-based 100-ch excitation patterns [1].
Two parameters can be applied to the auditory filter: a listener’s
audiogram and a health factor of the compression characteris-
tics. The individual health factor was determined stepwise from
the average of the audiogram patterns at all frequencies, e.g.,
“NOTHING,” “MILD,” “MODERATE,” and “SEVERE.”

The auditory spectrogram is resampled to 10, 000 Hz and
normalized using mean- and variance information. The frame
length to normalizations is almost the same as 384 ms [2]. The
normalization process with the long time-average frame en-
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Figure 1: Architecture of the proposed model.

hances the slow fluctuations corresponding to amplitude modu-
lation by speech signals.

To summarize the above, two normalized auditory spectro-
grams (L-frame × 100-ch) of the left and right channels are
used for the inputs of the proposed DNN architecture to train
and predict a SI of a speech signal.

2.2. Shared layer

The shared layers are designed with four convolutional neu-
ral network (CNN) blocks and a merge block. A CNN block
consists of three 2-D convolutional layers with a kernel size of
3×3 and rectified linear units (ReLU) activations, and the stride
length of the final layer is 1 × 3 [3]. Finally, the output from
the four 4-CNN blocks is flattened and converted to L × 128
dimensions by a dense layer.

A merge block combines two outputs from the left and right
channels of the CNN blocks. In this model, two latent represen-
tations are concatenated and fused by a dense layer with 128
ReLU nodes. Then, a dropout layer with a rate of 0.3 is added
to the end of the block. The fused representations are split into
two tasks, voice activity detection (VAD) and SI prediction.



2.3. Multi-task layer

Previous research shows that a multi-task learning (MTL)
method improves the accuracy of speech intelligibility predic-
tions [4]. Therefore, a simple VAD task is set as an MTL with
the SI prediction task. The proposed model uses a multi-head
attention mechanism for each task to gather task-specific infor-
mation from shared features. In the proposed model, the num-
ber of heads is set to 128. Once the attention has been applied,
we use a dense layer with one node activated with a sigmoid
function. For each frame, the dense layer produces two predic-
tions, the VAD probability V̂ul , and the SI score Îul in each
frame l of speech utterances. Finally, a global average pooling
layer obtains the final SI score Îu.

2.4. Objective function and Optimization

The loss function for each task can be defined as a combina-
tion of the mean-squared error (MSE) and binary cross-entropy
using the following equations:
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where U is the total number of training speech utterances, Lu

is the total number of frames, Iu is the correct SI for a single
utterance, and Vul is an ideal VAD probability in each frame
labeled as binary. In the study, we used the Adam optimizer
with a learning rate of 0.0001 for the optimization process.

3. Experiments
3.1. Dataset

The data provided by CPC2 was used to train the pro-
posed DNN model. To define the training (train) and de-
velopment (dev) sets for each dataset, the CPC2 dataset was
divided into the train or dev dataset. The data sizes of
train and dev data were 2449/272 for CEC2.train.1, 2501/277
for CEC2.train.2, 2494/277 for CEC2.train.3, 5191/576 for
CEC1.train.1, 4774/530 for CEC1.train.2, and 4598/510 for
CEC1.train.3 respectively.

In addition, we made sequence label data of an ideal VAD
probability Vuf to support the MTL. The ideal VAD label was
defined as the binary sequence in that the positive value starts at
2 sec and ends at 4 sec. Note that the ideal VAD label was only
used for training.

3.2. Computational requirements

For training, we used AMD™ EPYC 7763 64-Core@2.45 GHz
(total memory of 120 GB) and NVIDIA-A2 Tensor Core GPU.
Training typically lasts between three and eight hours, using a
batch size 2048.

3.3. Baseline model

The baseline model for CPC2 is an extended version of HASPI
version 2 [5]. The model uses the input stereo speech, individ-
ual audiograms (left and right ear), and the corresponding ref-
erence speech. The input signal is separated into left and right
channels for monaural processing by HASPI. Finally, the better
SI score predicted by each HASPI is chosen as the final score.

Table 1: Experimental results for development sets

Dataset Model RMSE NCC KT
CEC2.train.1 Baseline 29.82 0.66 0.50

Proposed 28.23 0.73 0.56
CEC2.train.2 Baseline 30.06 0.68 0.51

Proposed 27.47 0.76 0.58
CEC2.train.3 Baseline 30.35 0.67 0.50

Proposed 27.09 0.75 0.52
CEC1.train.1 Baseline 26.56 0.68 0.43

Proposed 21.62 0.68 0.36
CEC1.train.2 Baseline 26.62 0.69 0.43

Proposed 22.63 0.56 0.34
CEC1.train.3 Baseline 26.48 0.67 0.43

Proposed 22.19 0.58 0.29

4. Results and discussions
Table 1 shows the results of experiments with the root-mean-
squared error (RMSE), Normalized cross-correlation (NCC),
and Kendall’s tau (KT) between sets of the percent correct and
the predicted SI. As a result, the proposed model predicted SI
with less RMSE than the baseline system for all datasets of
CEC2 and CEC1. The NCC and KT of results by the proposed
method were higher than the baseline for datasets of CEC2.

The baseline model is designed as a “better ear” model to
predict SI scores for each ear and select the higher value. How-
ever, the result indicates that DNN-based models may combine
and use binaural representations processed by each auditory fil-
ter with individual hearing loss information.

5. Conclusions
A non-intrusive model is proposed to predict the SI of datasets
for CPC2. The proposed model consists of a non-linear auditory
filterbank, binaural sharing layers, and two types of attention
layers for MTL. The evaluation results show the proposed non-
intrusive method outperforms the intrusive baseline model.
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