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Introduction

« A fair way to assess speech intelligibility is critical for a variety of speech-related
applications.

« The most direct measure of speech intelligibility is the subjective listening test.

« However, conducting large-scale hearing tests is prohibitive.



Introduction

A series of speech intelligibility measures based on signal processing have been
proposed:

Speech intelligibility index (SII)

dExtended SII (ESII)

dSpeech transmission index (STI)

Short-time objective intelligibility (STOI)

dModified binaural short-time objective intelligibility (MBSTOI)
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Introduction

« With the advent of deep learning (DL) models, several studies have used DL models to
deploy non-intrusive speech intelligibility prediction models.

dTo predict STOI [1,2,3]
To predict subjective listening test results [4,5]

« Few studies have focused on designing speech intelligibility prediction models
for HA users.

O HASA-Net [6]: formulates the hearing loss pattern as a vector, which is combined
with speech signals.



Introduction

 In our previous study, a multi-objective speech assessment model (MOSA-Net) [7] was

proposed to predict objective quality and intelligibility metrics for normal
hearing individuals
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Fig. 1. Architecture of the MOSA-Net model.

Layer Layer
Global Average Global Average Global Average
STOI SDI




Introduction

« In this study, we extend MOSA-Net and develop a speech intelligibility prediction model
for HA, called the multi-branched speech intelligibility prediction model (MBI-
Net).



MBI-Net

« MBI-Net consists of two branches of model, each characterizing one channel of
speech signals in a binaural HA system.

* Each branch of MBI-Net consists of an MSBG model [8], a cross-domain feature
extraction module, and a frame-level speech intelligibility prediction model.

* The MSBG model modifies the speech signal according to the HA pattern and
serves as a simulator to simulate the hearing ability of HA users
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Experiments
Experimental Setup

» The Clarity Prediction Challenge dataset 2022 included ten HA systems from the
previous Clarity Enhancement Challenge 2021 [9].

« Twenty-five HA users participated in the listening test, and each listener was asked to
answer what she/he heard from a played speech sample.

« The intelligibility score ranges from o to 100 (the higher the better).

» The training set consisted of two tracks, Track 1 and Track 2. Track 1 consisted of 4863
training utterances, and Track 2 consisted of of 3580 training utterances.



Experiments

Experimental Results

Table 1: RMSE, Standard Deviation, and LCC scores of Let-
Branch, Right-Branch, MBI-Net (Ave), and MBI-Net (Lin) on

the closed-set (Track 1) dataset.

Systems RMSE || STDERR || LCC
Left-Branch 25.33 0.51 0.73
Right-Branch 26.24 0.52 0.72
MBI-Net (Ave) 25.12 0.51 0.74
MBI-Net (Lin) 24.65 0.50 0.74
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Experiments

Experimental Results

Table 2: RMSE, Standard Deviation, and LCC scores of Base-
line, MBI-Net (Hub), and MBI-Net (WavLM) on the closed-set

(Track 1) dataset.
Systems RMSE || STDERR || LCC
Baseline 28.52 0.58 0.62
MBI-Net (Hub) 24.65 0.50 0.74
MBI-Net (WavLM) 24.06 0.49 0.75
MBI-Net (WavLM+) 23.05 0.46 0.78
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Table 3: RMSE, Standard Deviation, and LCC scores of Base-
line, MBI-Net (Hub), and MBI-Net (WavLM) on the open-set

(Track 2) dataset.
Systems RMSE || STDERR || LCC
Baseline 36.52 1.35 0.53
MBI-Net (Hub) 30.72 1.22 0.59
MBI-Net (WavLM) 28.90 1.09 0.65
MBI-Net (WavLM+) 24.36 0.96 0.75

11
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Experiments

Experimental Results Closed Track (Track 1)
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Conclusion

« In this study, we presented MBI-Net, a multi-branched speech intelligibility prediction
model for binaural HA users.

 MBI-Net adopts two-branches of models corresponding to two speech channels
of the binaural HAs.

« Each branch of MBI-Net consists of an MSBG model, a cross-domain feature
extraction module, and the CNN-BLSTM+AT model architecture.

» The outputs of the two branches are then fused through a linear layer to obtain
the final speech intelligibility score.
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Conclusion

« Experimental results from both Track 1 and Track 2 have confirmed the advantages
of implementing the multi-branched model and using cross-domain features for
achieving a better intelligibility prediction score.

» Furthermore, experimental results confirm the advantages of WavLM in deploying
representative SSL features.

14
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