

Sheffield Systems E029 & E032 for the First Round Clarity Prediction Challenge

Zehai Tu, Ning Ma, Jon Barker Department of Computer Science, University of Sheffield, UK

How an automatic speech recogniser (ASR) can be used to predict the intelligibility?

SPANDH

The University Of Sheffield.

arity

6

 $\rightarrow 7$

Overview

- E032 (intrusive): Exploiting Hidden Representations from a DNN-based Speech Recogniser for Speech Intelligibility Prediction in Hearing-impaired Listeners
- E029 (non-intrusive): Unsupervised Uncertainty Measures of Automatic Speech Recognition for Non-intrusive Speech Intelligibility Prediction

E032 overview

Method

- DNN-based ASR model
- Hidden representations
- Similarity computation
- Experimental setup
- Results
- Conclusions

ASR model

- Transformer-based end-to-end ASR model
- Hybrid training: Connectionist Temporal Classification + Attention-based Sequence-to-sequence
- SpeechBrain LibriSpeech ASR transformer recipe¹
- Fine-tuned from pretrained LibriSpeech (960h) model, i.e., strong knowledge on clean speech recognition

Hidden representations

- PreNet representations: low-level acoustic features
- Encoder representations: high-level acoustic features
- Decoder representations: features with language model knowledge

Similarity computation

Given two hidden vectors of the reference and processed speech:

 $h, \hat{h} \in \mathcal{R}^d$

The similarities of the PreNet and Encoder representations:

$$sim(H^{bi}, \hat{H}^{bi}) = \frac{1}{T} \sum_{t=1}^{T} \max\left\{\rho_t^{ll}, \rho_t^{lr}, \rho_t^{rl}, \rho_t^{rr}\right\}$$

The similarity of the Decoder representations, fast dynamic time warping is used:

$$sim(H_w, \hat{H}_w) = \frac{1}{T_w} \sum_{t=1}^{T_w} \cos(H_w(t), \hat{H}_w(t))$$

$$sim(H^{bi}, \hat{H}^{bi}) = \max\left\{sim(H^{l}_{w}, \hat{H}^{l}_{w}), sim(H^{l}_{w}, \hat{H}^{r}_{w}), sim(H^{r}_{w}, \hat{H}^{l}_{w}), sim(H^{r}_{w}, \hat{H}^{r}_{w})\right\}$$

Experimental Setup

- Data split: 70% of CPC1_train_data is used as training set, 30% is used as dev set
- ASR training:
 - Cambridge MSBG hearing loss model as front-end to simulate hearing losses
 - Librispeech train-clean-100 + CEC1 training noise (CLS) for 10 epochs
 - CPC1 training set for 10 epochs
- Evaluation:
 - Root mean square error (RMS), normalised cross-correlation (NCC), Kendall's Tau coefficient (KT)
 - A logistic function fitting on the dev set
- Baselines:
 - MSBG + MBSTOI (CPC1 baseline)
 - ASR word correctness score (WCS)

E032 Overall results

	RMSE ↓	$ $ NCC \uparrow	$ $ KT \uparrow
Closed-set			
Baseline	0.285	0.621	0.398
ASR WCS	0.250	0.729	0.523
PreNet representations	0.347	0.299	0.182
Encoder representations	0.237	0.758	0.487
Decoder representations	0.231	0.773	0.498
Open-set			
Baseline	0.365	0.529	0.391
ASR WCS	0.250	0.723	0.534
PreNet representations	0.356	0.254	0.136
Encoder representations	0.241	0.751	0.534
Decoder representations	0.235	0.763	0.530

(b) Open-set

Further analysis on the CPC1 closed-set:

- Different training data
- With or without using the MSBG hearing loss model

MSBG	Training data	$ $ RMSE \downarrow	$ $ NCC \uparrow	KT↑
	LS	0.264	0.692	0.449
with	LS+CLS	0.243	0.746	0.464
	LS+CPC1	0.233	0.768	0.503
	LS+CLS+CPC1	0.231	0.773	0.498
w/o	LS+CLS+CPC1	0.234	0.767	0.476

E032 results

Further analysis on the CPC1 closed-set:

• Listener- and system-wise results

	RMSE \downarrow	NCC ↑	KT↑
Listener-wise			
Baseline Decoder representations	0.078 0.078	0.414 0.419	0.311 0.407
System-wise			
Baseline Decoder representations	0.147 0.048	0.798 0.982	0.244 0.644

E032 conclusions

- Representations of a state-of-the-art ASR could be better at intelligibility prediction than acoustic representations of MBSTOI.
- Language knowledge matters, as Decoder > Encoder representations.
- ASR recognition results (WCS) might not be the best intelligibility predictor.
- ASR training data matters, meanwhile, ASR trained only by LS can still make good prediction.
- MSBG hearing loss simulation can improve performance.
- If considering only monotonicity, no listener intelligibility label is needed.

Questions on E032?

E029 overview

- Method
 - □ ASR model (same as E032)
 - Unsupervised sequence-level uncertainty estimation
- Experimental setup (same as E032)
- Results
- Conclusions

E029 method

- Why uncertainty?
 - Intelligibility can be characterised as the probability of correct word recognition by human, meanwhile, uncertainty of ASR is also associated with the probability of ASR making correct predictions.
 - Uncertainty avoids cases like correct guess.
- Why unsupervised?
 - No listener intelligibility labels are needed.
- Why sequence-level?
 - No alignment is needed.
 - Contextual information could matter.

E029 method

Given a sequence of input acoustic features and the corresponding transcript targets (BPE tokens):

$$\{x_1,\ldots,x_N\}=oldsymbol{x},\ \{y_1,\ldots,y_L\}=oldsymbol{y}$$

The ASR posterior can be expressed as:

 $P(y_l|\boldsymbol{y}_{< l}, \boldsymbol{x}; \boldsymbol{\theta}^{(m)}) = \lambda P_{CTC}(y_l|\boldsymbol{y}_{< l}, \boldsymbol{x}; \boldsymbol{\theta}^{(m)}) + (1 - \lambda) P_{seq2seq}(y_l|\boldsymbol{y}_{< l}, \boldsymbol{x}; \boldsymbol{\theta}^{(m)})$

The sequence-level confidence \mathcal{C}_S is computed as:

$$C_S = \exp\left[\frac{1}{L}\ln\sum_{l=1}^{L}\max\frac{1}{M}\sum_{m=1}^{M}P(y_l|\boldsymbol{y}_{< l}, \boldsymbol{x}; \boldsymbol{\theta}^{(m)})\right]$$

E029 method

The sequence-level entropy \mathcal{H}_S can be approximated with top samples in a beam-search candidates:

$$\mathcal{H}_S = -\sum_{b=1}^B \frac{\pi_b}{L^{(b)}} \ln \mathrm{P}(\boldsymbol{y}^{(b)} | \boldsymbol{x}, \boldsymbol{\theta})$$

Where:

$$\pi_b = \frac{\exp \frac{1}{T} \ln P(\boldsymbol{y}^{(b)} | \boldsymbol{x}, \boldsymbol{\theta})}{\sum_k^B \exp \frac{1}{T} \ln P(\boldsymbol{y}^{(k)} | \boldsymbol{x}, \boldsymbol{\theta})}$$
$$\ln P(\boldsymbol{y}^{(b)} | \boldsymbol{x}, \boldsymbol{\theta}) = \sum_{l(b)=1}^{L^{(b)}} \ln \frac{1}{M} \sum_{m=1}^M P(\boldsymbol{y}_l^{(b)} | \boldsymbol{y}_{< l}^{(b)}, \boldsymbol{x}; \boldsymbol{\theta}^{(m)})$$

E029 Overall results

	WER	Measure	$RMSE\downarrow$	$ $ NCC \uparrow	KT↑
Closed-set					
CPC1 Baseline	-	-	0.285	0.621	0.398
Proposed		\mathcal{C}_S	0.241	0.751	0.472
without MSBG	25.17	$-\mathcal{H}_S$	0.239	0.754	0.477
	6 8	ASR WCS	0.249	0.730	0.525
Proposed		\mathcal{C}_S	0.234	0.767	0.497
with MSDC	30.33	$-\mathcal{H}_S$	0.233	0.768	0.499
with MSDG		ASR WCS	0.249	0.731	0.526
Open-set					
CPC1 Baseline	-	-	0.365	0.529	0.391
Proposed		\mathcal{C}_S	0.248	0.729	0.512
with MSBG	30.93	$-\mathcal{H}_S$	0.246	0.734	0.512
with WISDO		ASR WCS	0.253	0.717	0.530

E029 conclusions

- The uncertainty estimated by an ensemble of powerful ASR models is naturally well correlated to speech intelligibility.
- MSBG hearing loss simulation can improve performance.
- The closed-set performance of the non-intrusive E029 is quite close to the intrusive E032.
- The intrusive E032 generalise better as its performance is better in the open-set.

System	$ $ RMSE \downarrow	NCC ↑	KT ↑
Closed-set			
E032(intrusive) E029(non-intrusive)	0.231 0.233	0.773 0.768	0.498 0.499
Open-set			
E032(intrusive) E029(non-intrusive)	0.235 0.246	0.763 0.734	0.530 0.512

Thank you for your attention!

The intrusive system E032 has been open-sourced in the Clarity Challenge github repository **recipes/cpc1/e032_sheffield**, please check ^_^:

