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How an automatic speech recogniser (ASR)
can be used to predict the intelligibility?
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e Transformer-based end-to-end ASR model

e Hybrid training: Connectionist Temporal Classification + Attention-based
Sequence-to-sequence

e SpeechBrain LibriSpeech ASR transformer recipe’

e Fine-tuned from pretrained LibriSpeech (960h) model, i.e., strong knowledge
on clean speech recognition

Thttps://github.com/speechbrain/speechbrain/tree/develop/recipes/LibriSpeech/ASR/transformer
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PreNet representations: low-level
acoustic features

Encoder representations:
high-level acoustic features

Decoder representations:
features with language model
knowledge
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Given two hidden vectors of the reference and processed speech:
h,h € R4
The similarities of the PreNet and Encoder representations:

bi bi\ __ Il lr rl rr
szmlﬁ”HZ TE max{ pt}

The similarity of the Decoder representatlons, fast dynamic time warping is used:

Ty
sim(Hy, Hy) = 7= Y _ cos(Hy(t), Hy(t))
t=1

sim(H", H") = max {sim(HfU, HLY, sim(HL, H"), sim(H?,, H.), sim(H?,, ]E[[U)}



L N W 6 larity Experimental Setup

Data split: 70% of CPC1_train_data is used as training set, 30% is used as
dev set
ASR training:

o Cambridge MSBG hearing loss model as front-end to simulate hearing losses
o Librispeech train-clean-100 + CEC1 training noise (CLS) for 10 epochs
o CPC1 training set for 10 epochs
Evaluation:
o Root mean square error (RMS), normalised cross-correlation (NCC), Kendall’s Tau coefficient
(KT)
o Alogistic function fitting on the dev set
Baselines:
o MSBG + MBSTOI (CPC1 baseline)
o ASR word correctness score (WCS)
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| RMSE | | NCC1 | KT 1

Closed-set

Baseline 0.285 0.621 | 0.398
ASR WCS 0.250 0.729 | 0.523
PreNet representations 0.347 0.299 | 0.182
Encoder representations 0.237 0.758 | 0.487
Decoder representations 0.231 0.773 | 0.498
Open-set

Baseline 0.365 0529 | 0.391
ASR WCS 0.250 0.723 | 0.534
PreNet representations 0.356 0.254 | 0.136
Encoder representations 0.241 0.751 | 0.534
Decoder representations 0.235 0.763 | 0.530
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E032 Overall results
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Further analysis on the CPC1 closed-set:
e Different training data

e With or without using the MSBG hearing loss model

MSBG | Trainingdata | RMSE| | NCC*t | KT *

LS 0264 | 0.692 | 0.449
.o | LS+CLS 0.243 0.746 | 0.464
e LS+CPC1 0.233 0.768 | 0.503

LS+CLS+CPC1 | 0.231 | 0.773 | 0.498
w/o | LS+CLS+CPC1 | 0234 | 0767 | 0.476
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e Listener- and system-wise results
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Representations of a state-of-the-art ASR could be better at intelligibility
prediction than acoustic representations of MBSTOI.

Language knowledge matters, as Decoder > Encoder representations.
ASR recognition results (WCS) might not be the best intelligibility predictor.

ASR training data matters, meanwhile, ASR trained only by LS can still make
good prediction.

MSBG hearing loss simulation can improve performance.

If considering only monotonicity, no listener intelligibility label is needed.
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Why uncertainty?

o Intelligibility can be characterised as the probability of correct word recognition by
human, meanwhile, uncertainty of ASR is also associated with the probability of ASR

making correct predictions.
o Uncertainty avoids cases like correct guess.
Why unsupervised?
o No listener intelligibility labels are needed.
Why sequence-level?

o No alignment is needed.

o Contextual information could matter.
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Given a sequence of input acoustic features and the corresponding transcript
targets (BPE tokens):

{371,...,37]\[} — &, {yla"-ayL} =Y
The ASR posterior can be expressed as:
P(yily <y, z;0™) = APore(yily <, 2;07™) + (1 = N Pucgaseq (Y <, ;6™

The sequence-level confidence CS Is computed as:

CS—GXP[ mZz lmaXMZm 1 (yl|y<l,w;0(m))
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The sequence-level entropy 7—[5 can be approximated with top samples in a
beam-search candidates:

Hs = — Zszl % IHP(y(b)|CL‘7 0)

Where:
S exp % InP(y®|x,0)
b T F exp S mPy®z.0)

(b) b b m
ln P(y(b)|$, 9) — lezb):1 1Il % Zﬂ]\le P(yl( )|y(<l)7 €L, 0( ))
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| WER | Measure | RMSE| | NCC1 | KT?

Closed-set

CPCI Baseline | - | - | 0285 | 0.621 | 0398
Proposed Cs 0.241 0.751 | 0.472
. 25.17 e 0239 | 0754 | 0477
rthoucMoBG ASRWCS | 0249 | 0.730 | 0.525
Proposed Cs 0234 | 0767 | 0.497
. 30.33 M 0233 | 0.768 | 0.499
with MSEG ASRWCS | 0249 | 0731 | 0.526
Open-set
CPC1 Baseline | - | : | 0365 | 0529 | 0391
Proposed Cs 0.248 0.729 | 0.512
‘ 30.93 s 0246 | 0.734 | 0512
withMEEG ASRWCS | 0253 | 0.717 | 0.530
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Listener WCS

E029 Overall results
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e The uncertainty estimated by an ensemble of
powerful ASR models is naturally well
correlated to speech intelligibility.

: : : : System | RMSE | | NCC 1 | KT 1
e MSBG hearing loss simulation can improve
f Closed-set
erformance.

P E032(intrusive) 0.231 ‘ 0.773 ‘ 0.498
e The closed-set performance of the E029(non-intrusive) 0.233 0.768 0.499

non-intrusive E029 is quite close to the Open-set

intrusive E032. E032(intrusive)

0.235 ‘ 0.763 ‘0.530

E029(non-intrusive) 0.246 0.734 | 0.512

e The intrusive E032 generalise better as its
performance is better in the open-set.
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Thank you for your attention!

The intrusive system E032 has been open-sourced in the Clarity Challenge github repository
recipes/cpc1/e032_sheffield, please check * *:
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