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Introduction
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▪ Why are speech intelligibility (SI) models important?

▪ are significantly less time and cost intensive than SI measurements

▪ can give us a better understanding of the auditory system

▪ What can SI models be used for?

▪ Optimization of speech enhancement algorithms

▪ SI monitoring

▪ prediction of the benefit of hearing aids



SI Modeling
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▪ An existing model was used because accurate predictions would indicate that the model 

can be used in other acoustic situations as well

▪ SI and listening effort (LE) are closely related

→We used an LE model with a mapping from model output to intelligibility scores

▪ It is a monaural model, but the signals does not contain many binaural cues

→ we used better ear listening



Listening Effort prediction from Acoustic 

Parameters (LEAP) (Huber et al., 2018)
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Mean temporal distance 
(Hermansky et al., 2013)
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▪ Much noise → 𝑝𝑡−∆𝑡 ≈ 𝑝𝑡 → small M

▪ No noise → 𝑝𝑡−∆𝑡 ≠ 𝑝𝑡 → large M
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Mapping
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Closed data set: individual mapping

open data set: general mapping
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Results & Discussion
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▪ Possible reasons for difference 

between open and closed:

▪ Mapping: individual for closed and 

general for open

▪ Data: open test set contains five 

listeners and one algorithm excluded 

from training



Results & Discussion
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Conclusion
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▪ The non-intrusive LEAP model outperforms the intrusive MBSTOI for 

both data sets

▪ LEAP was not trained for this challenge:

▪ Trained with German, tested with English

▪ Trained without spatial information, tested with reverberation

→ The model generalizes and may also be used in other acoustic 

situations
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Thank you for your attention!
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