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Shannon Entropy:

It measures the amount of uncertainty or information that we are receiving
by looking at a random event.

Mutual Information:

Given two random events “S” and “R”, it measures how much information
you will get off “S” by looking at “R”, and vice versa.

Information is measured in bits!
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Taghia et al. (2012) Jensen and Taal (2014)
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What if we add a peripheral auditory model to get a “lower-level’
representation of the perceived sound (neural activity)?

This would allow us to study the effects of more physiological aspects in
speech intelligibility (neural health conditions, damage in the middle ear,
different pathologies).

For cochlear implant (Cl) users, the objective speech intelligibility is
computed with vocoders, not taking into account any physiological aspect
of the implantation.
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Our proposal uses a peripheral auditory model which output is the spike train produced in the auditory nerve fibers (Bruce et
al., 2018). Referred to as BEZ2018 model.

The BEZ2018 is able to simulate the physiological damage causing the hearing loss from the listener audiogram.

The intelligibility model in our proposal is based on the mutual information between the spike trains of the clean speech and
the improved speech-in-noise (SPIN) degraded by the hearing loss (HL).
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Front-end:

The BEZ2018 model was configured to simulate the
spike trains of 125 auditory nerve fibers (ANFs)

distributed equally in 25 critical bands. Speech Signal Spike Activity
.| Temporal .| Critical band
) ) o . . Left ¢ —>BEZ2018/~> ¥ "| integration | "| integration > Left
The whole speech signal is divided into overlapping . Anggg;m
' ' nalysis Temporal .| Critical band .
analyS|S windows of 20 ms. Wé%dr?]‘gs é; 1 integration ntearation | Binaural
L : A T | Critical band A
For each analysis window, a binaural Right 0 —>[BEZ2018(-> > ntegration [ mteeraton [ RO

representation was found by applying an alignment
delay to the left spike trains. Then left and right
spike trains are concatenated together.

The spike trains are added together by critical band
and integrated in temporal windows of 200 us.
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Back-end:

The mutual information between the spike activity of the
clean speech “S” and the degraded speech “R” is
computed in the Information block.

Spike
Activity Information Block:
. . —>| Entropy }—‘
Then a frame selection is performed to average the S (et ean) —]| wiiat ||| Frame ||| e
mutual information only in those analysis window and @ oenn —] oint EntropY >/ |nformation | |”|Selection [>|Ye"24in9
critical band frames “(j,k)” where the speech is present. (Loftea) sl Entropy |
SAMII
tShAM”fiS then the average mutual information “I(S|R)” in :':9:: ear::: —— e 1L eegig i Best | saun
ose frames: ight ear
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SAMII = — Z Ly (S | R) S (Binaural) —_,, Frame (Binaural)
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SAMII is obtained for the left ear only, right ear only and
binaural. Best value is used for prediction.
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Entropy:
Transmitted Information "H(S)"
The entropy H of a spike activity I "
“T" is computed as: 1P
H(T) = — (p - log, (p) + (1= p) - Tog, (1 = p)) L (1
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With p being the probability of a
spike occurring:
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Joint Entropy: Sj ‘
The joint entropy is calculated between the spike activity of “S” v O/ 1 0621102 1 0/ +¢6 >
and “R”.

. L Critical band
The pair (s,r) are realisations of “S” and “R”. e.g. (1,0) means

that a spike occurred in “S” but not in “R”. The joint entropy is Rj,k
then computed as: . e o,o0o/ 04|12 /0|1/|0]|...
H(S.R) == o(s.r) - logy[c(s.7)]
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Transmitted Information "H(S)" Perceived Information "H(R)"
I I i ]

Mutual Information: W”” Al

This is an example of how the information
evolves in time.
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Mutual Information "I(S|R)"

The mutual information is:
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Transmitted Information "H(S)"

Z Frames:

The pre-speech entropy is low and corresponds to the ”!
spontaneous activity of the auditory nerve fibers. TR T g

I | a
A rise in the entropy means that the voice is present. The
Zi Frames:

entropy itself is used as a VAD. &u | ,}
|\ \ ‘\fH I‘ | 0.05
IIIF h b 1\
The pre-speech mutual information is also low and )
corresponds to the noise and the spontaneous activity. Mutual Information "I(S|R)"

Arise in the mutual information means that the voice is
being perceived. Therefore, these frames are averaged
to compute SAMII. _ 3
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Transmitted Informatlon "H(S)"
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Baseline algorithm:
The MBSTOI.

Dataset:

It consists of various scenes where a spoken sentence is presented in a noisy
and reverberant environment using a simulated binaural room impulse response

(BRIR).
The listeners had mild to severe hearing loss and are bilateral hearing aid users.

The open-set data provided was used, with 3580 scenes for training and 632 for
testing.



Prosthetic M th d M 4 I-I
Aaﬁrin Group e o S Hannover Medical School

Fitting:

The training scenes were divided in two groups. 90% of the scenes were used to fit a
sigmoid function as a transfer function between SAMII and correctly guessed words. The
remaining 10% were used to validate the transfer function.

The same fitting was performed with the MBSTOI as baseline.
Root mean square error (RMSE) was used as validation score.

Testing:

Once the testing data was published by the challenge organizers, SAMIl was computed and
the transfer function used to predict the correct guessed words for each scene.

Predictions were submitted and the challenge organizers used the RMSE to evaluate the
proposed algorithm SAMII and provided the score obtained by the baseline.
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SAMII Fitting

The transfer function (sigmoid) i g
seems to be imprecise in both 2| ER e
metriCS. 507wl e e

In SAMII, the imprecision is higher
at low values, while high values are
a good indication of better
intelligibility.

MBSTOI is imprecise a high values.
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Performances of the MBSTOI and
SAMII were similar.

Wlth the Val Idatlon data’ M BSTOl Table 1: Score obtained in root mean square error (RMSE).

obtained better scores than SAMII. Algorithm Validation data _ Testing data
MBSTOI (Baseline) 27.35% 36.52%
SAMII + BEZ2018  30.36% 35.16%

With the open-set testing data,
SAMII performed slightly better than
MBSTOI.

21
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SAMII may be better at generalizing than MBSTOI.
A high SAMII is a good indication that the speech is clearly understood while a low SAMII is not conclusive.

Contrary to SAMII, MBSTOI is generally good at predicting low intelligible speech, but scenes with an
MBSTOI greater than 0.3 are spread all over the correctness axis.

Misalignments between the spike activity of “S” and “R” are the possible cause of the imprecision at low
SAMIIs.

Although this imprecision, SAMII performed similar to the baseline MBSTOI, which is a state-of-the-art
algorithm. With future improvements, SAMI| could be a reliable Sl objective metric that works at “low-level”
representations of the perceived sound
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Thank you!

I'm happy to answer your questions!

Or you can find me at:
Alvarez.Franklin@mh-hannover.de
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SAMII Fitting MBSTOI Fitting
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Shannon Entropy Mutual Information
S
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Shannon Entropy Mutual Information
S

A signal with a 50% probability of getting a white or a black square
carries 1 bit of information

H(S) = 1 bit
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Shannon Entropy Mutual Information
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Shannon Entropy Mutual Information

LRI RUETO &

A signal with a 25% probability of getting a white, black, brown or green
square carries 2 bits of information

H(R) = 2 bits
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Shannon Entropy Mutual Information
S

A signal with a 50% probability of getting a white or a black square
carries 1 bit of information

ML ITRUETO &

A signal with a 25% probability of getting a white, black, brown or green
square carries 2 bits of information

Number of expected 7] < Bitstorepresent
outcomes ’ — those outcomes

Only when all outcomes are equally probable!
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Shannon Entropy
S

A signal with a 50% probability of getting a white or a black square
carries 1 bit of information °

ML ITRUETO &

A signal with a 25% probability of getting a white, black, brown or green
square carries 2 bits of information

Number of expected 7] < Bitstorepresent
outcomes ’ — those outcomes

Only when all outcomes are equally probable!

Mutual Information

S

LU B

??? ¢ oo

When S is white, R is white or brown
When S is black, R is black or green
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Shannon Entropy Mutual Information
S S

A signal with a 50% probability of getting a white or a black square R
carries 1 bit of information. o|leo o o ]]]]]I
R
e 6 o o e o o
When S is white, R is white or brown

When S is black, R is black or green

A signal with a 25% probability of getting a white, black, brown or green

square carries 2 bits of information. ] _ o ) _ )
In this case the mutual information is 1 bit because looking at S, there is

50% probability of correctly guessing the outcome in R.

Number of expected . J1 «— Bitstorepresent .
outcomes E — 2 those outcomes I(S | R) - H(S) - 1 b|t

Only when all outcomes are equally probable! Mutual information ranges from 0 to min( H(S), H(R) )
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Shannon Entropy Mutual Information
S S -

R
o|l® e o e o ©o
Nevertheless, the mutual information will be relatively high because

looking at S you can get plenty of information about R

R

In these cases the Shannon entropy is reduced considerably ~
because the probability distribution has changed I(S | R) H (S)




