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Information Theory

▪Shannon Entropy:

It measures the amount of uncertainty or information that we are receiving 
by looking at a random event.


▪Mutual Information:

Given two random events “S” and “R”, it measures how much information 
you will get off “S” by looking at “R”, and vice versa.


▪ Information is measured in bits!
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Mutual Information as Speech Intelligibility Metric
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Taghia et al. (2012) Jensen and Taal (2014)



Motivation
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▪What if we add a peripheral auditory model to get a “lower-level” 
representation of the perceived sound (neural activity)?


▪This would allow us to study the effects of more physiological aspects in 
speech intelligibility (neural health conditions, damage in the middle ear, 
different pathologies).


▪For cochlear implant (CI) users, the objective speech intelligibility is 
computed with vocoders, not taking into account any physiological aspect 
of the implantation.



First Clarity Prediction Challenge
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▪Our proposal uses a peripheral auditory model which output is the spike train produced in the auditory nerve fibers (Bruce et 
al., 2018). Referred to as BEZ2018 model.

▪The BEZ2018 is able to simulate the physiological damage causing the hearing loss from the listener audiogram.

▪The intelligibility model in our proposal is based on the mutual information between the spike trains of the clean speech and 

the improved speech-in-noise (SPIN) degraded by the hearing loss (HL).

https://claritychallenge.github.io/clarity_CC_doc/docs/cpc1/cpc1_baseline



First Clarity Prediction Challenge
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https://claritychallenge.github.io/clarity_CC_doc/docs/cpc1/cpc1_baseline

BEZ2018

BEZ2018

Mutual 
Information

▪Our proposal uses a peripheral auditory model which output is the spike train produced in the auditory nerve fibers (Bruce et 
al., 2018). Referred to as BEZ2018 model.

▪The BEZ2018 is able to simulate the physiological damage causing the hearing loss from the listener audiogram.

▪The intelligibility model in our proposal is based on the mutual information between the spike trains of the clean speech and 

the improved speech-in-noise (SPIN) degraded by the hearing loss (HL).



BEZ2018 Model
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Bruce et al. 2018
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SAMII: Front-end
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▪Front-end:

▪ The BEZ2018 model was configured to simulate the 

spike trains of 125 auditory nerve fibers (ANFs) 
distributed equally in 25 critical bands.


▪ The whole speech signal is divided into overlapping 
analysis windows of 20 ms.


▪ For each analysis window, a binaural 
representation was found by applying an alignment 
delay to the left spike trains. Then left and right 
spike trains are concatenated together.


▪ The spike trains are added together by critical band 
and integrated in temporal windows of 200 s. μ



SAMII: Temporal and critical band integration
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Time

Auditory 
nerve 
fibers

Spike train of every ANF



SAMII: Temporal and critical band integration
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jth analysis window (20 ms)

t
ANF

ith integration window (200 us)

kth critical band



SAMII: Temporal and critical band integration
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t
ANF

0 0 0 2 1 0 2 0

2 1 1 0 2 1 0 1

0 0 0 3 1 0 2 0

1 0 1 2 0 0 2 0

1 1 0 1 2 1 0 0

Analysis Window (20 ms)

Integration Window (200 us)

Critical band

We are referring to this as 
the spike activity



SAMII: Back-end
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▪Back-end:

▪ The mutual information between the spike activity of the 

clean speech “S” and the degraded speech “R” is 
computed in the Information block.


▪ Then a frame selection is performed to average the 
mutual information only in those analysis window and 
critical band frames “(j,k)” where the speech is present.


▪ SAMII is then the average mutual information “I(S|R)” in 
those frames:





▪ SAMII is obtained for the left ear only, right ear only and 
binaural. Best value is used for prediction.

SAMII =
1

|Z | ∑
(j,k)∈ZI

Ij,k (S |R)

Franklin Yohan Alvarez Cardinale



SAMII: Information Block
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▪Entropy:

▪ The entropy H of a spike activity 

“T” is computed as:




▪ With  being the probability of a 
spike occurring:


 

H(T ) = − (ρ ⋅ log2 (ρ) + (1 − ρ) ⋅ log2 (1 − ρ))

ρ

ρ =
Nspikes,T

NF ⋅ NI



SAMII: Information Block
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▪ Joint Entropy:

▪ The joint entropy is calculated between the spike activity of “S” 

and “R”.


▪ The pair (s,r) are realisations of “S” and “R”. e.g. (1,0) means 
that a spike occurred in “S” but not in “R”. The joint entropy is 
then computed as:





▪ There are four possible combinations of (s,r), and their 
probability distribution is computed as:














H(S, R ) = − ∑
(s,r)

σ (s, r) ⋅ log2[σ (s, r)]

σ (1,1) =
∑l min(Sl, Rl)

NF ⋅ NI

σ (1,0) =
∑l max(0,Sl − Rl)

NF ⋅ NI

σ (0,1) =
∑l max(0,Rl − Sl)

NF ⋅ NI
σ (0,0) = 1 − σ (1,1) − σ (1,0) − σ (0,1)

0 1 0 2 1 0 2 0

0 0 0 4 1 0 1 0

Analysis Window (20 ms)

Integration Window “l” (200 us)

Critical band

Number of spikes  
(NF = 5 fibers)

σ (1,0) =
0 + 1 + 0 + 0 + 0 + 0 + 1 + 0

5 ⋅ 8
=

2
40

σ (1,1) =
0 + 0 + 0 + 2 + 1 + 0 + 1 + 0

5 ⋅ 8
=

4
40

Sj,k

Rj,k

σ (0,1) =
0 + 0 + 0 + 2 + 0 + 0 + 0 + 0

5 ⋅ 8
=

2
40

σ (0,0) = 1 −
4
40

−
2
40

−
2
40

=
32
40
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SAMII: Information Block
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▪Mutual Information:

▪ This is an example of how the information 

evolves in time.


▪ Notice that the mutual information only rises 
in those frames where the speech is 
transmitted and perceived.


▪ The mutual information is:




▪ The mutual information ranges from 0 to  
min( H(S), H(R) )

I(S |R) = H(S ) + H(R) − H(S, R)

Franklin Yohan Alvarez Cardinale



SAMII: Frame Selection
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▪Z Frames:

▪ The pre-speech entropy is low and corresponds to the 

spontaneous activity of the auditory nerve fibers.

▪ A rise in the entropy means that the voice is present. The 

entropy itself is used as a VAD.


▪ZI Frames:

▪ The pre-speech mutual information is also low and 

corresponds to the noise and the spontaneous activity.

▪ A rise in the mutual information means that the voice is 

being perceived. Therefore, these frames are averaged 
to compute SAMII.


SAMII =
1

|Z | ∑
(j,k)∈ZI

Ij,k (S |R)



SAMII: Frame Selection
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▪Z Frames:

▪ The pre-speech entropy is low and corresponds to the 

spontaneous activity of the auditory nerve fibers.

▪ A rise in the entropy means that the voice is present. The 

entropy itself is used as a VAD.


▪ZI Frames:

▪ The pre-speech mutual information is also low and 

corresponds to the noise and the spontaneous activity.

▪ A rise in the mutual information means that the voice is 

being perceived. Therefore, these frames are averaged 
to compute SAMII.


SAMII =
1

|Z | ∑
(j,k)∈ZI

Ij,k (S |R)

Spontaneous activity

Noise & 
spontaneous activity

Z frames

ZI frames



Methods
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▪Baseline algorithm:

▪ The MBSTOI.


▪Dataset:

▪ It consists of various scenes where a spoken sentence is presented in a noisy 

and reverberant environment using a simulated binaural room impulse response 
(BRIR).

▪ The listeners had mild to severe hearing loss and are bilateral hearing aid users.

▪ The open-set data provided was used, with 3580 scenes for training and 632 for 

testing.



Methods
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▪Fitting:

▪ The training scenes were divided in two groups. 90% of the scenes were used to fit a 

sigmoid function as a transfer function between SAMII and correctly guessed words. The 
remaining 10% were used to validate the transfer function.


▪ The same fitting was performed with the MBSTOI as baseline.

▪ Root mean square error (RMSE) was used as validation score.


▪Testing:

▪ Once the testing data was published by the challenge organizers, SAMII was computed and 

the transfer function used to predict the correct guessed words for each scene.

▪ Predictions were submitted and the challenge organizers used the RMSE to evaluate the 

proposed algorithm SAMII and provided the score obtained by the baseline.



Results
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▪The transfer function (sigmoid) 
seems to be imprecise in both 
metrics.


▪ In SAMII, the imprecision is higher 
at low values, while high values are 
a good indication of better 
intelligibility.


▪MBSTOI is imprecise a high values.



Results
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▪Performances of the MBSTOI and 
SAMII were similar.


▪With the validation data, MBSTOI 
obtained better scores than SAMII.


▪With the open-set testing data, 
SAMII performed slightly better than 
MBSTOI.



Discussion and Conclusion
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▪SAMII may be better at generalizing than MBSTOI.


▪A high SAMII is a good indication that the speech is clearly understood while a low SAMII is not conclusive.


▪Contrary to SAMII, MBSTOI is generally good at predicting low intelligible speech, but scenes with an 
MBSTOI greater than 0.3 are spread all over the correctness axis.


▪Misalignments between the spike activity of “S” and “R” are the possible cause of the imprecision at low 
SAMIIs.


▪Although this imprecision, SAMII performed similar to the baseline MBSTOI, which is a state-of-the-art 
algorithm. With future improvements, SAMII could be a reliable SI objective metric that works at “low-level” 
representations of the perceived sound



Thank you!

I’m happy to answer your questions!


Or you can find me at:

Alvarez.Franklin@mh-hannover.de



Results
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Mutual Information as Speech Intelligibility Metric
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Taghia et al. (2012)



Information Theory (Example)

▪Shannon Entropy
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▪Mutual Information
S

???



Information Theory (Example)

▪Shannon Entropy
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▪Mutual Information

A signal with a 50% probability of getting a white or a black square 
carries 1 bit of information

S

H(S) = 1 bit



Information Theory (Example)

▪Shannon Entropy
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▪Mutual Information

R
???



Information Theory (Example)

▪Shannon Entropy
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▪Mutual Information

A signal with a 25% probability of getting a white, black, brown or green 
square carries 2 bits of information

R

H(R) = 2 bits



Information Theory (Example)

▪Shannon Entropy
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▪Mutual Information

A signal with a 50% probability of getting a white or a black square 
carries 1 bit of information

A signal with a 25% probability of getting a white, black, brown or green 
square carries 2 bits of information

E = 2nNumber of expected 
outcomes

Bits to represent 
those outcomes

Only when all outcomes are equally probable!

S

R



Information Theory (Example)

▪Shannon Entropy
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▪Mutual Information

A signal with a 50% probability of getting a white or a black square 
carries 1 bit of information

A signal with a 25% probability of getting a white, black, brown or green 
square carries 2 bits of information

E = 2nNumber of expected 
outcomes

Bits to represent 
those outcomes

Only when all outcomes are equally probable!

When S is white, R is white or brown 
When S is black, R is black or green

S

R

S

R
???



Information Theory (Example)

▪Shannon Entropy
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▪Mutual Information

A signal with a 50% probability of getting a white or a black square 
carries 1 bit of information.

A signal with a 25% probability of getting a white, black, brown or green 
square carries 2 bits of information.

E = 2nNumber of expected 
outcomes

Bits to represent 
those outcomes

Only when all outcomes are equally probable!

When S is white, R is white or brown 
When S is black, R is black or green


In this case the mutual information is 1 bit because looking at S, there is 
50% probability of correctly guessing the outcome in R.

S

R

S

R

Mutual information ranges from 0 to min( H(S), H(R) ) 

I(S|R) = H(S) = 1 bit



Information Theory (Example)

▪Shannon Entropy
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▪Mutual Information

In these cases the Shannon entropy is reduced considerably 
because the probability distribution has changed

Nevertheless, the mutual information will be relatively high because 
looking at S you can get plenty of information about R

S

R

S

R

I(S|R) ~ H(S)


