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Abstract
An accurate objective speech intelligibility prediction algo-
rithms is of great interest for many applications such as speech
enhancement for hearing aids. Most algorithms measures the
signal-to-noise ratios or correlations between the acoustic fea-
tures of clean reference signals and degraded signals. However,
these hand-picked acoustic features are usually not explicitly
correlated with recognition. Meanwhile, deep neural network
(DNN) based automatic speech recogniser (ASR) is approach-
ing human performance in some speech recognition tasks. This
work leverages the hidden representations from DNN-based
ASR as features for speech intelligibility prediction in hearing-
impaired listeners. The experiments based on a hearing aid in-
telligibility database show that the proposed method could make
better prediction than a widely used short-time objective intel-
ligibility (STOI) based binaural measure.
Index Terms: Intelligibility prediction, objective measures,
deep neural networks, hearing-impaired listeners, hearing aids

1. Introduction
Accurate objective speech intelligibility measurement plays an
important role in the development of speech enhancement, e.g.
hearing aids, because subjective listening experiments can be
time-consuming and expensive [1]. Since the 2010s, objec-
tive intelligibility prediction algorithms, including STOI [2],
sEPSM [3], and HASPI [4], have achieved success by compar-
ing the acoustic features of reference and degraded speech sig-
nals. However, these algorithms have been rarely evaluated on
the degraded speech enhanced by data-driven DNN-based mod-
els, which have made significant progress in speech enhance-
ment [5].

The speech recognition performance of recent DNN-based
ASR models is approaching that of humans, and they have also
shown similar patterns in speech recognition results [6, 7, 8, 9].
Therefore, it has been of interest to use DNN-based ASR for
intelligibility prediction. Meanwhile, DNNs are naturally good
feature extractors. Compared to the acoustic features proposed
in the aforementioned intelligibility prediction algorithms, hid-
den representations of DNN-based ASR are optimised to di-
rectly correlate with recognition.

In this work, we exploit the hidden representations from
one of the state-of-the-art end-to-end ASR models for intelligi-
bility prediction on the first round Clarity Prediction Challenge
(CPC1) [10], which includes a large number of binaural speech
signals simulated in complex noisy environments and then en-
hanced by complex hearing-aid models. The results show that
the similarities between ASR hidden representations of refer-
ence and processed signals could be better than the conven-
tional acoustic features at intelligibility prediction. The results
also show that using ASR hidden representations could be a bet-
ter method for intelligibility prediction than simply using ASR

recognition results.

This paper is organised as follows. Section 2 reviews re-
lated objective intelligibility prediction measures. Section 3
presents the ASR model used in this work and the method for
similarity computation from hidden representations. Section 4
shows the experimental setup including database and evalua-
tion methods. The results and detailed analyses are presented
and discussed in Section 5. Section 6 concludes the work and
proposes future plans.

2. Related Work
Early work on intelligibility prediction for speech in additive
noise is based on measured signal-to-noise ratio (SNR) in fre-
quency bands or at modulation frequencies, e.g., the articulation
index [11], the speech intelligibility index [12] and the speech
transmission index [13]. However, these methods are not suit-
able in scenes involving (strong) non-stationary noises and non-
linear processing [14]. A more recent SNR-based algorithm is
sEPSM, which calculates the ratio between envelope powers of
processed signals and residual noise. Similarly, GEDI [15] pre-
dicts intelligibility based on the signal-to-distortion ratio in the
envelopes output from a gammachirp auditory filterbank. More
recent methods have been correlation-based, with STOI being
the most widely used example [16]. STOI and its variants are
based on the cross-correlation between the temporal envelopes
output from a one third octave filterbank of the reference and
processed signals. However, they produce poor estimates for
noisy speech enhanced by Wiener filtering [15] or DNN-based
enhancement [17]. Additionally, HASPI incorporates a hearing
loss model, and combines the measures of auditory coherence
and cepstral correlation between the reference signal and the
processed signal degraded by hearing loss. Most of these meth-
ods use perceptually motivated acoustic features, while not di-
rectly tuned to be correlated with speech recognition.

Previous works using ASR models for intelligibility pre-
diction usually leverage outputs of ASR models, and most of
them are evaluated on small vocabulary tasks. For example, the
predicted words are used to compute the recognition correct-
ness in [7, 8]. Alternatively, phoneme posterior probabilities
from the ASR outputs are used to estimate the ASR word error
rates [18] or directly predict speech recognition thresholds [19]
for matrix sentence tests. Several word posterior related mea-
sures are explored in [20]. For unlimited vocabulary size, phone
accuracy and phone posterior are used in [21] and [9]. To the
best of our knowledge, ours is the first work to use ASR hid-
den representations for intelligibility prediction. The proposed
method could take better advantage of the reference signals, and
work particularly well in some situations, e.g., when the pro-
cessed and reference signals are very different, while the ASR
still makes a correct guess.
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3. Method
In this section we describe how we leverage hidden represen-
tations from an ASR model for intelligibility prediction. ASR
based on transformer architectures [22] has achieved great suc-
cess recently and is used in this work. The predicted intelli-
gibility is defined as the similarity between hidden representa-
tions from reference signals x and processed signals x̂. In addi-
tion, performances of hidden representations at different levels
within the ASR are investigated. Although binaural signals pro-
duced by hearing aids are studied, single-channel ASR is used
for hidden representation extraction, that is, two hidden repre-
sentations for left and right channels are extracted given a bin-
aural signal. All four hidden representations from the left, right
channels of reference and processed signals Hl, Hr , Ĥl, Ĥr

are used to compute the similarity.

3.1. ASR model

Figure 1 shows the architecture of the transformer-based ASR
model used in this work. It consists of a convolutional neu-
ral network (CNN) based PreNet, a transformer-based encoder,
and a transformer-based decoder. The PreNet is a stack of con-
volutional layers for better understanding global context [23].
Both the encoder and decoder are composed of a number of
transformer blocks. Each encoder transformer block consists of
a multi-head self-attention sub-layer and a position-wise fully
connected feed-forward sub-layer. A residual connection and
layer normalisation [24] are applied to both sub-layers. In
the multi-head attention sub-layer, the input features are firstly
mapped to query Q, key K with embedding length dk, and
value V with embedding length dv , and the attention mecha-
nism is computed as:

Attention (Q,K, V ) = Softmax
(
QKT

√
dk

)
V. (1)

The projection and attention mechanism are run in parallel mul-
tiple times, and the concatenation of attention outputs is then
multiplied by a linear projection matrix. Compared to the en-
coder transformer block, an extra multi-head attention sub-layer
is inserted to perform the attention mechanism on the encoder
output features. In addition, a positional mask is used in the
decoder multi-head self-attention sub-layer to enforce that only
the known previous decoded outputs are dependent.

The ASR model is optimised with the joint CTC-attention
mechanism [25], i.e., a combination of Connectionist Tempo-
ral Classification (CTC) [26] and attention-based sequence-to-
sequence (seq2seq) [27]. The CTC leverages repeatable inter-
mediate label representation and a special blank label for ASR
decoding, and the loss function can be expressed as:

LCTC = − log

 ∑
π∈β−1(l)

M∏
m=1

P (zmπm
)

 , (2)

where β is a function that removes repeated intermediate and
blank labels, πm is the intermediate and blank label sequence,
P (zmπm

) is the probability of πm at time m, and l is the target
label sequence. The seq2seq loss function is the sum of diver-
gences between the ground truth label zu and predicted token
ẑu at u-th position in the transcript sequence:

Lseqseq =
∑
u

P (zu)(logP (zu)− logP (ẑu)). (3)

Figure 1: ASR architecture and hidden representations at three
levels.

The overall loss function for ASR optimisation is:

L = λLCTC + (1− λ)Lseqseq, (4)

where λ is a predefined weighting coefficient.

3.2. Hidden representations

Three hidden representations shown in Figure 1 are studied
in this work, including outputs of the CNN PreNet Hpre ∈
RT

pre×dpre , outputs of the transformer encoder Henc ∈
RT

enc×denc

, and outputs of the transformer decoder Hdec ∈
RT

dec×ddec . The PreNet representations Hpre are viewed as
low-level acoustic features. Meanwhile, the encoder represen-
tations henc can be viewed as high-level acoustic representa-
tions, as ASR models using CTC decoding does not learn a lan-
guage model, and CTC output intermediate labels are indepen-
dent from each other. In contrast, the seq2seq decoder is usually
considered as an internal language model [28]. Therefore, the
decoder representations Hdec are viewed as hidden representa-
tions with learnt language knowledge.

3.3. Similarity computation

The cosine similarity is used in this work as it is naturally well
scaled. Given two hidden representations at a single time step,
h, ĥ ∈ Rd, the cosine similarity is computed as: cos(h, ĥ) =
h·ĥ
‖h‖‖ĥ‖ , where ‖ · ‖ is the L2 norm. For PreNet and encoder
representations, the reference and processed representations of
each time step are matched. The similarity at each time step
ρt for the binaural reference and processed representations is
computed from the pair of representations at this time step, i.e.,
ρt = cos(ht, ĥt). The overall similarity between the binau-
ral reference and processed representations is computed from
the four pairs of hidden representations at each time step, i.e.,
{hl, ĥl}, {hl, ĥr}, {hr, ĥl}, {hr, ĥr}:

sim(Hbi, Ĥbi) =
1

T

T∑
t=1

max
{
ρllt , ρ

lr
t , ρ

rl
t , ρ

rr
t

}
. (5)

For decoder representations, the left and right representa-
tions of the reference and processed signals could have variable
time steps, i.e., T l, T r , T̂ l, T̂ r could be different. For each pair
of sequences of decoder representations {H, Ĥ}, the fast dy-
namic time warping algorithm [29] is applied to find the warp



path. The overall similarity of the warped pair is computed as:

sim(Hw, Ĥw) =
1

Tw

Tw∑
t=1

cos(Hw(t), Ĥw(t)), (6)

where Hw and Ĥw are the warped representations, Tw is the
total time steps after warping. The overall binaural similarity is
then computed as:

sim(Hbi, Ĥbi) = max

{
sim(Hl

w, Ĥ
l
w), sim(Hl

w, Ĥ
r
w),

sim(Hr
w, Ĥ

l
w), sim(Hr

w, Ĥ
r
w)

}
.

(7)

4. Experimental Setup
4.1. Database

CPC1 provides a large number of processed binaural speech
signals by machine learning hearing-aid systems and the cor-
responding responses from hearing impaired listeners. Each
signal represents a simulated mixture of a target speech and
an interfering noise within a simulated cuboid-shaped living
room, enhanced by a hearing-aid system given the audiogram
(i.e., pure-tone measure of hearing thresholds at different fre-
quencies) of a listener. Both the binaural processed signals and
the corresponding anechoic reference signals are provided. The
ground truth intelligibility is presented as the listener word cor-
rectness scores (WCS). A total of 6 speakers, 10 hearing aid
systems and 27 listeners are included. The CPC1 includes two
tracks: (1) closed-set, that is the listeners and systems in the
evaluation set are overlapped with those in the training data; (2)
open-set, that is the systems or listeners in the evaluation set are
not included in the training data. For full details see [10]. For
both tracks, the scenes in the training data are split into 70%
and 30% as a training set and a development set, and the results
on the evaluation set are reported.

4.2. ASR model

The SpeechBrain [30] LibriSpeech transformer ASR recipe is
used in this work. 80-channel log mel-filter bank coefficients
are used as input with a 25 ms window with a stride of 10 ms.
The PreNet consists of three 2D convolutional layers, and the
encoder and the decoder consists of twelve and six transformer
blocks, respectively. The weighting coefficient λ is set 0.3 for
training, and 0.4 for decoding. The dimensions at one time
step for PreNet, encoder, and decoder hidden representations
are 10240, 768, and 768, respectively.

4.3. Evaluation

The baseline intelligibility predictor includes the Cambridge
MSBG hearing loss model [31, 32, 33, 34] and MBSTOI [16].
The MSBG hearing loss model simulates hearing abilities given
a listener’s audiogram, and the MBSTOI is a refined binaural
version of STOI. In addition, the correlations between WCS of
listeners and of ASR models are also reported.

Three performance evaluation measures, including root
mean square error (RMSE), normalised cross-correlation coef-
ficient (NCC), and Kendall’s Tau coefficient (KT), are exploited
as the evaluation metrics. As the first two metrics could be
invalid for non-linear correlations, a logistic function f(x) =
1/[1 + exp(ax + b)] is applied to the predicted intelligibility

Table 1: Evaluation results on the CPC1 of various methods.

RMSE ↓ NCC ↑ KT ↑

Closed-set

Baseline 0.285 0.621 0.398
ASR WCS 0.250 0.729 0.523
PreNet representations 0.347 0.299 0.182
Encoder representations 0.237 0.758 0.487
Decoder representations 0.231 0.773 0.498

Open-set

Baseline 0.365 0.529 0.391
ASR WCS 0.250 0.723 0.534
PreNet representations 0.356 0.254 0.136
Encoder representations 0.241 0.751 0.534
Decoder representations 0.235 0.763 0.530

(a) Closed-set

(b) Open-set

Figure 2: Listener WCS versus predicted intelligibility by vari-
ous methods and the corresponding logistic mapping functions.

to examine the monotonic relation, following the conventions
of previous works, including [2, 16]. For the proposed method,
the parameters a and b are optimised on the development set.
For the baseline system, the parameters are optimised on all the
CPC1 training data, as described in [10].

5. Experiments and Results
5.1. Hidden representations

The training of the default ASR model starts from the pre-
trained model on the LibriSpeech1 (LS). Therefore, it has a
strong knowledge on clean speech. Furthermore, it is optimised
with LS train-clean-100 set added with noises from the train-
ing set in the first round Clarity Enhancement Challenge [35]
(CLS) for ten epochs. Finally, the ASR model is optimised
on CPC1 training set for another ten epochs. In addition, the
MSBG hearing loss model is used to process the signals when
training and testing on CPC1. The correlations between the
listener WCS and the baseline (MSBG+MBSTOI) prediction,
ASR WCS, predicted intelligibility with different ASR hidden
representations, are shown in Table 1. Figure 2 also shows the
listener WCS against the predicted intelligibility by the base-

1huggingface.co/speechbrain/asr-transformer-transformerlm-
librispeech



Table 2: Evaluation results on the closed-set of decoder repre-
sentations from different ASR models.

MSBG Training data RMSE ↓ NCC ↑ KT ↑

with

LS 0.264 0.692 0.449
LS+CLS 0.243 0.746 0.464
LS+CPC1 0.233 0.768 0.503
LS+CLS+CPC1 0.231 0.773 0.498

w/o LS+CLS+CPC1 0.234 0.767 0.476

Table 3: Listener- and system-wise evaluation results on the
closed-set of predicted intelligibility.

RMSE ↓ NCC ↑ KT ↑

Listener-wise

Baseline 0.078 0.414 0.311
Decoder representations 0.078 0.419 0.407

System-wise

Baseline 0.147 0.798 0.244
Decoder representations 0.048 0.982 0.644

line, ASR WCS, the decoder representations, and their corre-
sponding logistic mapping functions. Both the results of the
closed-set and open-set indicate that the similarity between the
reference and processed high-level hidden representations could
outperform the baseline and ASR WCS at intelligibility predic-
tion in terms of RMSE and NCC. The ASR WCS predictions
are advantageous with regard to KT because WCS is discrete,
i.e., in which case tied pairs are more likely to appear. Between
the two high-level hidden representations, the decoder ones in-
cluding language model knowledge are better than the encoder
ones which represent high-level acoustic features in terms of
RMSE and NCC, while the KT scores are close. The following
experiments and analyses are conducted on the closed-set.

5.2. Data mismatch

For the purpose of investigating the influence of data mismatch
(i.e., different distribution of training and evaluation data) on
ASR models for intelligibility prediction, four different ASR
models with different training data knowledge (LS, LS+CLS,
LS+CPC1, LS+CLS+CPC1) are probed. The MSBG model is
used for all models as preprocessing for hearing loss simula-
tion. ASRs trained on CLS can be considered to have knowl-
edge of noisy speech, and those trained on CPC1 can be consid-
ered to have knowledge of processed noisy speech by hearing-
aid systems. The correlations between the predicted intelligi-
bility with decoder representations and the ground truth WCS
are shown in Table 2. The results show that the ASR models
trained with CPC1 training data (LS+CPC1, LS+CLS+CPC1)
could make optimal predictions, while the latter one is slightly
better in terms of RMSE and NCC because it has knowledge of
noisy speech. Meanwhile, the ASR models with no knowledge
of CPC1 data (LS, LS+CLS) could also achieve competitive re-
sults. It is worth noting that the ASR model trained only on
clean LS signals could still outperform the baseline system.

5.3. MSBG hearing loss model

The influence of the MSBG hearing loss model is also inves-
tigated. The intelligibility prediction results of ASR models
trained on LS+CLS+CPC1 with and without the MSBG model
for hearing loss simulation are also shown in Table 2. The re-
sults indicate that the MSBG hearing loss model could offer a

slight advantage on intelligibility prediction for the ASR hidden
representations.

5.4. Listener- and system-wise correlation

The results of the listening experiments provided by CPC1 can
be noisy, because of the not strictly constrained speech mate-
rials, the large size vocabulary, etc. Therefore, both the lis-
tener WCS and the predicted intelligibility scores are averaged
on listeners and hearing-aid systems for more conclusive analy-
sis. The average listener WCS, the predicted intelligibility from
the baseline, and the proposed decoder representation similar-
ity from the ASR trained on LS+CLS+CPC1 with the MSBG
hearing loss model on different listeners and hearing-aid sys-
tems with their corresponding error bars are shown in Figure 3a
and Figure 3b. The listener- and system-wise evaluation results
on the closed-set are measured and shown in Table 3. The intel-
ligibility predicted from the ASR decoder representations could
gain a slight advantage over the baseline on listener-wise intel-
ligibility scores. For system-wise intelligibility, the proposed
method is much more correlated with the listener WCS than the
baseline.

(a) Listener-wise

(b) System-wise

Figure 3: Listener- and system-wise average intelligibility with
standard errors on the closed-set.

6. Conclusions
This paper has proposed a novel method for speech intelligi-
bility prediction by leveraging DNN-based ASR hidden repre-
sentations. The similarity of the hidden representations from
an ASR neural network is measured between a clean reference
signal and the corresponding processed signal which is used for
intelligibility prediction. The experimental results on the re-
cent CPC1 database, which provides machine learning hearing
aid processed binaural signals, have shown that the proposed
method can outperform other intrusive methods such as MB-
STOI, the refined binaural variant of STOI. Future work will
focus on expanding the evaluation of the proposed method to
different databases, such as [6], with more baseline methods,
including STOI and HASPI.
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