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Abstract
Most existing speech intelligibility measures are either designed
for single-channel applications – hence unsuited to evaluate
hearing aid algorithms –or intrusive, applicable only in sim-
ulated scenarios in which the clean signal is available. Non-
intrusive speech intelligibility measures able to reliably predict
speech intelligibility without knowledge of the clean signal are
urgently needed. This paper proposes a non-intrusive measure
that predicts speech intelligibility using only the processed sig-
nals and audiogram of the listener as input. The proposed mea-
sure relies on three steps, namely a hearing-loss model, a fea-
ture extractor and a predicting function. The hearing loss model
uses the target signal and the listener’s audiogram as input while
the feature extractor and the predicting function are trained on
processed signals labeled in terms of speech intelligibility dur-
ing a listening test. The evaluation is conducted using cross-
validation on both tracks of the first Clarity Prediction Chal-
lenge (CPC1).
Index Terms: non-intrusive speech intelligibility prediction;
self-supervised learning; contrastive predictive coding

1. Introduction
The number of people suffering from hearing loss is rapidly in-
creasing and despite the progress in hearing aid technology, the
problem of hearing aid processing of speech-in-noise remains
challenging. One of the many aspects to be addressed in order
to solve this issue, is the improvement of the SI measures used
to evaluate speech enhancement algorithms. SI represents the
ability of listeners to understand speech from signals degraded
by noise, reverberation or even processing artefacts. It is of-
ten reported using the speech reception threshold (SRT) mea-
sured during listening tests [1]. Though typically considered
as the gold standard of SI measurements, these tests are costly,
time-consuming and often not feasible, e.g., when online es-
timation of SI is necessary. Consequently, many signal-based
measures have been developed. These measures aim at estimat-
ing SI without the need for listening tests and can be broadly
categorized as being either intrusive or non-intrusive [2]. Intru-
sive measures are computed using both a clean reference sig-
nal and a test signal as input, whereas non-intrusive measures
can be computed from the test signal alone. Additionally, SI in
signals processed for hearing aid applications largely depends
on the presence of binaural cues [3] and measures should be
developed for this use case. A reliable non-intrusive SI mea-
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sure applicable to binaural signals would facilitate the evalua-
tion of binaural speech enhancement algorithms in realistic set-
tings and allow for a better automatic selection of hearing aids
parameters.

Most signal-based measures of SI are however designed
to be applied only to single-channel signals. Examples of in-
trusive single-channel SI measures include the articulation in-
dex [4], the speech transmission index (STI) [5], the speech in-
telligibility index (SII) [6], the short-time objective intelligibil-
ity (STOI) [7] and mutual-information-based techniques, such
as the algorithm proposed in [8]. Several non-intrusive single-
channel SI measures have been designed as extensions of the
STOI [9, 10], relying on estimating the amplitude envelope of
the clean speech from the input signal. Others, such as the
speech-to-reverberation modulation energy ratio (SRMR) [11]
and its extension the normalized SRMR (SRMRnorm) [12]
apply a predicting function on perceptually motivated fea-
tures extracted from the target signal. SI measures that have
been proposed for binaural scenarios include the use combi-
nation of equalization-cancellation (EC) models [13] with the
SII [14, 15]. The binaural STOI (BSTOI), later refined into the
deterministic BSTOI (DBSTOI), uses an EC model to combine
both channels of the binaural signal into a single-channel sig-
nal used as input to the STOI measure [16]. Both BSTOI and
DBSTOI are intrusive.

More recently proposed SI measures rely on the progress in
machine learning techniques. This can entail the use of an auto-
matic speech recognizer (ASR), as proposed in [17, 18]. Aim-
ing at non-intrusive prediction, the method in [19], applies the
binaural preprocessing stage from [20] to process the binaural
signal before using it as input to the ASR. The SI is afterwards
predicted by applying mapping between the mean temporal dis-
tance (MTD) – a representation of the ASR error [21] – and the
SRT. Most machine learning based approaches do not rely on
an ASR but rather on a set of features input to a deep neural
network. This is the case, for example, in [22], where a neu-
ral network predicts SI from a sequence of spectral features,
in [23], where both short- and long-term features are input to a
classification and regression tree or in [24] , where STOI like
features are input to a convolutional neural network [24]. We
recently proposed to predict SI from binaural signals by using
features computed as a latent representation of the signal as in-
put to a deep learning based SI predictor [25]. These features
are computed using a combination of contrastive predictive cod-
ing (CPC) [26] and vector quantization (VQ) [27] methods and
referred to as VQ-CPC features.

The use of machine learning for SI has however often been
burdened by the lack of large datasets of binaural signals labeled
in terms of SI. Thanks to the development of the first Clarity
Prediction Challenge (CPC1) [28], such dataset is now avail-
able to develop and compare SI measures. Taking advantage of



this opportunity, the work presented in this report has two goals.
First it aims to confirm the suitability of VQ-CPC features for SI
prediction from binaural signals. Second, it aims at developing
a reliable non-intrusive SI measure that could be used in hear-
ing aids applications. For this purpose, the VQ-CPC features
are computed from signals pre-processed using an hearing-loss
model before being input to a predicting function that improves
on the one that we originally used in [25].

The remainder of this report is structured as follows. The
proposed non-intrusive SI measure is described in Section 2.
The experiments and considered benchmark, based on the
CPC1 dataset, are described in Section 3. The results in terms
of root mean-squared error (RMSE) are presented in Section 4
and Section 5 concludes the report.

2. Proposed approach
The non-intrusive SI measure that is proposed in this paper is
intended to be designed to evaluate the speech intelligibility
that a listener with hearing loss would experience from noisy
reverberant signal processed through hearing aid processing al-
gorithms. The measure is computed from the audiogram of the
target listener and the processed binaural signal ym(n), where
n and m ∈ [0, 1] denote the sample and channel index, respec-
tively. This computation is done in three steps that are presented
in the following subsections.

2.1. Hearing loss model

SI is largely dependent on the type and severity of the hearing
loss of the target listener. In order to take this into account, a
hearing loss simulator using the Moore, Stone, Baer and Glas-
berg (MSBG) hearing loss model is used. This model is based
on the work of the Cambridge Auditory Group [29, 30, 31, 32].
The implementation provided with the software of the CPC1
baseline [33] is used in this paper. The signal ym(n) is pro-
cessed in the gammatone filterbank domain to simulate the four
main aspects of hearing loss, namely the raised auditory thresh-
olds, the reduced dynamic range and the lower temporal and
frequency resolution. The audiogram of the target listener is
used to attenuate the signal in each frequency band according
to their hearing loss. The loss in temporal and frequency reso-
lution is modelled through frequency smearing whose amount
is dependant on the severity of the listener’s hearing loss as de-
scribed in [28]. The application of this hearing loss model is
the only part of the proposed non-intrusive measure that is lis-
tener dependent. The output of this stage is a two channel signal
xm(n) from which features are extracted.

2.2. Feature extraction

VQ-CPC features are computed from the two-channel signal
xm(n) using the approach that we recently proposed in [25].

The microphone signal is divided into T = dN/He over-
lapping frames of length W , where H denotes the hop length.
The samples in each tth frame are used to construct a vector of
length 2 ·W :

xt =
[
x0(tH), . . . , x1(tH +W − 1)

]T (1)

resulting in the time-ordered sequence of T vectors:

x =
{
x0, x1, . . . , xT−1

}
. (2)

The feature computation results in the sequence:

c =
{
c0, c1, . . . , cT−1

}
, (3)

Table 1: Overview of the Train and Test Datasets for both tracks
of CPC1

Track 1 Track 2
Train Test Train Test

Number of signals 4863 2421 3580 632
Total duration in hours 8.2 4.1 6.0 1.1
Number of algorithms 27 27 22 27
Number of listeners 10 10 9 10

where ct denotes the vector of length K feature coefficients ex-
tracted from the tth frame. The feature extraction is trained and
learns to extract sequences c that maximise the mutual informa-
tion between the input and output sequences:

I(x; c) =
∑
x,c

p (x, c) log

(
p (x|c)
p (x)

)
. (4)

To do so, VQ and CPC methods are used to compute the
sequence c as a latent representation of the input sequence
x [34, 26]. This computation requires previous training of the
feature extraction using a large amount of binaural signals. It
should however be emphasised that these signals do not need
to be labeled and no assumption about the downstream task of
SI prediction is made during feature computation. The SI is fi-
nally estimated by using the sequence c as input to a trained
predicting function.

2.3. Predicting function

Given a new dataset of latent features c extracted from the
trained VQ-CPC and associated intelligibility scores, we train
a predicting function implemented as a lightweight neural net-
work that controls global pooling [35], and a second neural net-
work that makes a final prediction based off the pooled repre-
sentation. This approach follows the “Pool” approach outlined
in our previous work [25] inspired by sequence pooling strate-
gies in low-data training of vision transformers [35].

For each frame in c, a shared linear layer computes a scalar.
All weightings are then collected and softmax is applied, form-
ing normalised weightings. A weighted average of all frames is
then computed, forming a global representation. This represen-
tation is fed into a multi-layer perceptron (MLP) and predicts
the final intelligibility score, scaled to be between 0 and 1 [25].

The network is trained to minimise the mean-squared er-
ror (MSE) loss between the estimated and true speech intelli-
gibility score. Building on our prior work, we tried more so-
phisticated predicting functions which incorporated deep con-
volutional networks and transformer architectures, but found
the limited dataset size meant these more powerful architectures
were prone to overfitting the training split. Hence, we found the
simple predicting functions introduced in our earlier work to
work best.

3. Experiments
Training and evaluation of the proposed non-intrusive SI mea-
sure are done using the CPC1 dataset. The data consist of
binaural signals that have been generated by convolving clean
anechoic speech with various binaural room impulse responses
(RIRs), adding noise at various signal-to-noise ratios (SNRs)
and processing the resulting noisy and reverberant signal with
speech enhancement algorithms designed for hearing aids. All
signals have been labeled in terms of speech intelligibility in a



Table 2: RMSE obtained when using the 3 considered measures

Track 1 Track 2
MBSTOI 28.51 26.61

SRMRnorm 35.01 35.09
Proposed 38.93 39.41

listening test for which the audiogram of each listener has been
measured. An overview of the dataset is presented in Table 1
but the interested reader can refer [28] for further details.

The proposed SI measure is evaluated on both track 1 and
track 2 in order to examine the difference ein performance when
applied to unknown algorithms or listeners. In track 1, all lis-
teners and algorithms are represented in both training and test
sets. In track 2, 5 of the listeners and 2 of the algorithms present
in the test set are absent in from the training set. For all signals
in the test set of track 2 algorithm, or listener, or both, are not
present in the training set.

For both track 1 and track 2, we used 5-fold cross valida-
tion on the training set only to determine suitable settings for the
proposed measure. In this case, the used folding is identical to
the one used in the baseline software provided for CPC1 [33].
Settings yielding the best performance were then used on the
complete test set, for both tracks. We report the results using
cross-validation in the report and full training is used in the sub-
mitted scores. In both tracks and for all test signals, the SI is
predicted using only the target signal and the listener’s au-
diogram. No data other than the one provided in the CPC1
dataset were used for training.

4. Results

The performance of the proposed measure is assessed in terms
RMSE (used to rank CPC1 submissions) between the mea-
sured and predicted SI. This performance is here benchmarked
against the use of two other metrics. The considered metrics are
the modified binaural STOI (MBSTOI) [36] and SRMRnorm.
SRMRnorm simply refers to the (non-intrusive) SRMRnorm av-
erage over both input channels. Both use the signal obtained
after applying the hearing loss model. For each of these 2 mea-
sures, the RMSE is computed after applying a sigmoidal map-
ping whose parameters were learned using the same training
setup as for our proposed SI measure. In the case of MBSTOI,
this is equivalent to using the baseline provided for CPC1. The
obtained RMSE is presented in Table 2. The final submis-
sion was done for both the proposed measure (E023) and the
combination of hearing loss model, SRMRnorm and sigmoid
mapping (E035).

5. Conclusion

The proposed measure does not outperform the baseline based
on MBSTOI. As the proposed measure is non-intrusive, this
was expected. However, it performs poorly compared to
SRMRnorm, despite using a more complex predicting function.
This is disappointing considering the encouraging results ob-
tained using VQ-CPC features. This might be due to the rela-
tively small training dataset, compared to previous work. Fur-
ther analysis, e.g., using results on the unseen test set, would be
helpful to investigate this behaviour.
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