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1. Introduction

This contribution (E022) to the first Clarity Prediction Chal-
lenge [1] is based on the LEAP model (LEAP: Listening Ef-
fort prediction from Acoustic Parameters), introduced by Hu-
ber et al. [2] and further developed by Huber et al. [3]. It is
a fully blind model which derives its predictions solely based
on audio signals containing speech degraded by noise, rever-
beration, or distortions. The model has also been successfully
used for predicting the benefit of non-linear speech enhance-
ment strategies [3]. The model was originally developed to pre-
dict ratings of perceived listening effort obtained from normal-
hearing listeners, i.e., it does not comprise adaptations to in-
troduce individual factors such as increased hearing thresholds.
During the training period of the challenge, we experimented
with different ways of individualizing the predictions for the
aided hearing-impaired listeners, including the provided hear-
ing loss simulation. We did not, however, find significant im-
provements of individualized predictions in comparison to us-
ing the generic model framework. Hence, the only individu-
alization we included was to derive individual mapping func-
tions for the closed data set based on the available training data.
Effectively, this corresponds to taking into account the general
trend of an individual listener to have “relatively better” or “rel-
atively worse” performance in the tested group of listeners. For
the open data set, no adaptation of the model was made except
for a modified mapping function to predict speech intelligibility
scores instead of listening effort ratings.
So far, the LEAP model has only been employed to predict
speech perception in monaural or diotic listening conditions.
Since the current challenge comprised acoustic scenes with spa-
tially separated sound sources, we experimented with different
approaches for taking binaural effects into account (also in con-
junction with the blind binaural speech intelligibility model,
bBSIM, described in contribution E019 [4]). We observed that
the contribution of binaural effects to the predicted intelligi-
bility scores could be largely captured by employing a simple
better-ear approach, i.e., by computing the predictions indepen-
dently for each ear and then taking the higher score as prediction
score. In other words, the contribution of binaural cues beyond
head-shadow effects appears to play a minor role only for the
current test set. It is possible that this is due to the algorithmic
modifications, which may have reduced the binaural cues and
focused on SNR enhancement. Another potential reason for the

limited contribution of binaural cues could be that the hearing-
impaired listeners were not able to exploit such cues due to their
hearing loss. We therefore decided not to incorporate a binaural
preprocessing stage in this contribution and employ a better-ear
approach instead.

2. Method
The LEAP model is based on a part of an automatic speech
recognition (ASR) system that computes triphone posterior
probabilities (or ”posteriorgrams”) by means of a deep time-
delay neural network (TDNN). Posteriorgrams are spanned by
the dimensions time and triphones and represent the ASR sys-
tem’s certainty for having recognized a certain triphone at a cer-
tain point in time. Speech deterioration caused by, e.g., additive
noise, reverberation, or distortions lead to an increased recog-
nition uncertainty of the ASR system, which is reflected by a
”smearing” of the graphical representation of the posteriorgram
along the time axis. The degree of smearing is quantified by
a performance metric, which is the ”mean temporal distance”
(M ), proposed by Hermansky et al. [5]. When predicting lis-
tening effort ratings, M is linearly mapped to the subjective
listening effort scale. In the present application, however, a sig-
moidal mapping to the speech intelligibility scores is employed.
The mapping function was derived empirically using the train-
ing data set of the Clarity Prediction Challenge. The structure
of the TDNN, its training, and the performance metric will be
described in more detail in the following.

2.1. Posteriorgram generation

40-dimensional log-Mel filterbank energies were used as acous-
tic features input to the TDNN. The length of each feature frame
was 10 ms. Apart from the current feature frame, a context of
+/-15 feature frames were used as input to the TDNN. The in-
put layer was followed by seven hidden layers with 700 recti-
fied linear units (ReLU) each. The dimensionality of the output
layer was 6448, i.e., one neuron per triphone. The ASR was
trained with about 1000 hours of clean German speech of an
in-house training data set, expanded to about 8000 hours by
mixing the speech with different kind of noises and also con-
volving it with different room impulse responses. The network
was trained with the lattice-free maximum mutual information
(LF-MMI) criterion [6]. As pointed out in [3], the TDNN used



here had two output layers during training, one that followed
the LF-MMI objective function and one that followed a cross-
entropy (CE) objective function. The latter one is usually used
to regularize training only, while the former one is used for ASR
purposes. However, here the CE output layer is used for gen-
erating posteriorgrams, due to better results in terms of higher
correlations between subjective listening effort ratings and cor-
responding predictions by the LEAP model regarding earlier ex-
periments.

2.2. Performance metric

The measure M computes the average difference between two
vectors of triphone posteriors pt−∆t and pt (i.e., two columns
of the posteriorgram) with a temporal distance ∆t:

M(∆t) =
1

T −∆t

T∑
t=∆t

D(pt−∆t, pt).

T is the temporal length of the analyzed posteriorgram
(which is equal to the length of the analyzed speech file), and
D is the symmetric Kullback-Leibler divergence between two
vectors x and y with components x(i) and y(i):

D(x, y) =
N∑
i=1

x(i)log(
x(i)

y(i)
) +

N∑
i=1

y(i)log(
y(i)

x(i)
).

N equals the dimensionality of the TDNN output layer
(6448) and M(∆t) is computed for ∆t = 350 to 800 ms (in
50 ms steps) and averaged to the final listening effort predictor
M .

2.3. Mapping from M to speech recognition

The measure M is an entropy-based scalar and needs to be
mapped to a perceptual scale according to the experiment at
hand based on a reference condition. In this challenge, the map-
ping is derived to predict the speech recognition in percent cor-
rect by using

f(x) =
1

1 + exp(4 ∗ s50 ∗ (L50 − x))
(1)

where L50 corresponds to the speech recognition threshold
(SRT) at which 50 % of the words are understood correctly [7].
The slope at this point is denoted with s50. The psychometric
function is fitted to the training data by minimizing the least
squared error. The parameters (L50 and s50) that result in the
best fitting curve are then used during testing to map the M
values to intelligibility scores.

The parameters that fit best to all points of the open training
data are used to map the M values of the open test set. The
mapping for the closed data set is a bit different, because it is
done individually for each of the listeners. The training data
is divided into 27 data sets, one set for each listener. For each
of the listener data sets, the optimal mapping parameters are
calculated and stored with the corresponding listener ID. The M
values of the closed test set are mapped by using the individual
parameters of each listener.

2.4. Application of the model in the challenge

The stimuli provided in the challenge were preprocessed by re-
moving the first 2 seconds and the last 1 s, which were known
to contain noise only. The trimmed stimuli were then used as
input to the model. The predictions were made for each ear in-
dependently, and the higher score was used as final prediction.
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