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1. Introduction
This contribution (E019) to the first Clarity Prediction Chal-
lenge (CPC1) [1] is based on the latest version of the blind
Binaural Speech Intelligibility Model (BSIM20) [2] and the
correlation-based version of the Speech Transmission Index
(STI) [3]. Former versions of BSIM [4] did not work blindly
(i.e., they required separated speech and noise signals) and ap-
plied the Speech Intelligibility Index (SII) [5] as back-end. In
this contribution we use the blind front-end of the BSIM20
which is called bBSIM in the following. bBSIM produced equal
results as the non-blind version but requires less auxiliary infor-
mation about the target speech and the masking noise, so that
it can be combined with arbitrary back-ends predicting speech
recognition scores (see, e.g., [6, 7]).

The use of bBSIM helps to understand, how relevant the
binaural information in the CPC1 is for speech understanding.
In this contribution, we use the correlation based STI as back-
end, as it is takes reverberation effects into account and pro-
duced the best predictions for the test set of CPC1 compared
to other back-ends we tried. This back-end is not blind as it
requires target speech and interfering noise separately and thus
the combination of bBSIM and STI is a hybrid model. Note,
that in this contribution no machine learning is applied but two
classic approaches from psychoacoustics are combined that are
very easy to compute. In this respect this contribution is very
close to the baseline model of the Clarity challenge which used
a very similar binaural front-end [8] combined with a back-end
that also analyses the modulations of the signal [9]. In this re-
spect this contribution can be seen as an alternative baseline
model that shows how far we (the authors) were able to get
without machine learning and training to the test data.

2. Method
2.1. bBSIM

The bBSIM[2] receives the mixed target speech and interferer
signals at the left and the right ear as input. The stimuli pro-
vided in the challenge were preprocessed by removing the first
2 seconds and the last 1 second that were known to contain
only noise. After this, noisy frames of the signal were still de-
tected. We decided to additionally apply an rms based voice
activity detection to remove silent frames. To simulate the fre-
quency selectivity of the human auditory system, the input sig-

nals are split into 30 Equivalent Rectangular Bandwidth-(ERB-
)[10] spaced frequency bands by using a gammatone filterbank
[11] ranging from 150 Hz to 8000 Hz. Based on the individ-
ual pure tone audiograms, two internal threshold simulating
noises were added to the left and right input signals to simu-
late the hearing loss. The left and right threshold simulating
noises were generated as uncorrelated signals, so that the EC
stage of bBSIM cannot cancel them out. For frequencies up to
1500 Hz, binaural processing is realized as blind equalization-
cancellation (EC) [2] mechanism, where the differences in in-
teraural time differences (ITDs) and interaural level differences
(ILDs) between target and interfering signal can be used to im-
prove the signal-to-noise ratio. For frequencies above 1500 Hz,
the better ear is selected blindly. In the equalization step the two
ear channels of each gammatone filter channel are equalized in
level and phase. Then, the cancellation step is applied, which
uses two different strategies: 1) a minimization of the output
power and 2) a maximization of the output power. While the
first strategy can be assumed to be the better strategy at nega-
tive SNRs, because it attenuates the interfering signal, the sec-
ond strategy can be assumed to be better at positive SNRs, be-
cause the power of the target signal is increased. To choose the
best of both strategies in each frequency channel, the speech-
to-reverberation modulation energy ratio (SRMR) [12] is used.
SRMR describes the ratio between speech-like and non speech-
like modulations by calculating a ratio between the energy in
modulation frequency channels below 16 Hz and above 16 Hz.
The SRMR is calculated for both strategies and both ear chan-
nels and, subsequently, the EC channel and the ear channel with
the higher SRMR are combined to produce a single channel sig-
nal with enhanced SNR. Due to its simple calculation SRMR
can be applied independently to each ERB channel.

2.2. Speech Transmission Index

The speech transmission index (STI) [13] receives bBSIM’s
output signals of the clean target speech and degraded speech
as input. The calculation of the separate target and interfering
signals is possible as bBSIMs processing is linear with respect
to the signals, so that speech and noise can be processed sepa-
rately using the EC parameters determined by the blind model
(see [2] for details). The STI analyzes the modulation trans-
fer function by comparing the envelopes of the input signals to
calculate the modulation transmission index for each frequency



band. Here, the normalized covariance method [3] was applied:
The covariance between the envelopes of the target speech and
the degraded speech were calculated and then normalized with
the individual variances of the target speech and the degraded
speech. The weighted average of the transfer index of all fre-
quency bands gives the STI and is very similar to the later pro-
posed short-time objective intelligibility (STOI) measure [8].

2.3. Mapping from STI to speech recognition

The STI is an index value ranging from 0 to 1 and needs to
be mapped to a perceptual scale according to the experiment
based on a reference condition. In this challenge, the mapping
is derived to predict the speech recognition in percent correct by
using

f(x) =
1

1 + exp(4 · s50 · (L50 − x))
, (1)

where L50 corresponds to the speech recognition threshold
(SRT) at which 50 % of the words are understood correctly [14].
The slope at this point is denoted with s50. The psychometric
function is fitted to the training data by minimizing the least
squared error. The parameters (L50 and s50) that fit best to all
points of the open training data have been used to map the STI
index values of the open test set. The mapping for the closed
data set has been done individually for each listener: The train-
ing data is divided into 27 data sets, one set for each listener.
For each listener, the optimal mapping parameters are calcu-
lated and stored with the corresponding listener ID. The STI
index values of the closed test set are mapped by using the indi-
vidual parameters of each listener.

3. Discussion
We observed that the model’s binaural processing did not gen-
erate relevant spatial or binaural unmasking. This indicates that
the signals do not provide usable binaural information. To eval-
uate this, the model has to be applied to the unprocessed signals.
A further reason for the missing unmasking might be that the
applied signal enhancement algorithms have destroyed binaural
information.

Furthermore we observed that the listener’s individual hear-
ing loss as expressed by the pure tone audiogram was not im-
portant for the accuracy of the model predictions. This find-
ing might mirror the fact that the listener’s adjusted the over-
all level themselves and that consequently audibility did not
play an important role in these measurements and that supra-
threshold hearing deficits are not well described by the pure
tone audiogram. For that reason we did not use the pure tone
audiogram at all in our second submission (E022).

For the interpretation of the results of this challenge it has
to be taken into account that the human recognition data is bi-
nomially distributed and that consequently the standard error of
each measured recognition score is given by

σp =

√
p(1− p)

n
, (2)

with p denoting the recognition score of the sentence (with val-
ues from 0 to 1) and n denoting the number of words tested
in this sentence. If, for example, a sentence with six words is
tested and three of them have been repeated correctly by the lis-
tener, the standard error of the p estimate equals approximately
20%. In other words, even a perfect model that predicts p ex-
actly will achieve an average standard error not better than 20%.
Considering this helps to interpret the results of this challenge.

We recommend to predict average recognition scores in the next
round of this challenge so that differences between the partici-
pating prediction models are not blurred due to the statistics of
the ground truth data.
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