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1. Introduction
In the context of the first clarity prediction challenge [1], it is
presented the spike activity mutual information index (SAMII)
as a new intrusive objective metric to predict speech intelligi-
bility. I has been shown that mutual information performs suc-
cessfully as a speech intelligibility metric, compared to its more
commonly used counterpart metrics, such as the signal-to-noise
ratio (SNR) and correlation [2].

The motivation for developing SAMII goes beyond hearing
aid applications, and it is to offer a reliable speech intelligibility
metric for more physiologically inspired auditory models. Such
models are capable of simulating the spike activity produced
by an acoustic stimulus in a population of auditory nerve fibers
(ANFs). This models can be useful to infer aspects in the human
periphery that contributes to speech understanding.

The spike activity is a representation of the action poten-
tials, also called spikes, that are produced in a population of
ANFs. Spikes can be represented as binary variables where the
value “one” means that a spike has occurred. Also, spikes can
be concatenated in time to form spike “spike trains” which are
unique for each ANF.

2. Methodology
2.1. Peripheral auditory model

In this work, the auditory peripheral model presented by Bruce
et al. (2018) [3] is used. It uses a population of ANFs, grouped
by critical bands centered at different center frequencies, to sim-
ulate the spike activity from any sound stimulus. Additionally,
it is capable of simulating the hearing loss from a subject audio-
gram.

Because of the required computational resources, a “light”
version of the BEZ2018 model was configured to work with
25 critical bands with center frequencies distributed logarith-
mically between 250 Hz and 8 kHz to cover the whole speech
frequency range. The number of ANFs was limited to five per
critical band, giving a total population of 125 ANFs. This is
the minimum possible number of fibers that preserve the orig-
inal ratio of 30-10-10 for high, medium and low spontaneous
firing rate ANFs, respectively [3]. This version of the model is
referred to as BEZ2018 L.

Another “hight fidelty” version of the BEZ2018 model, that
runs in a GPU, has been developed as well. It was configured to
work with 40 critical bands with center frequencies distributed
between 125 Hz and 16 kHz. Each critical band counts with 100
ANFs giving a total population of 4000 ANFs. In this case the
ratio is 61-23-16 for high, medium and low spontaneous firing
rate ANFs, respectively, which is another well known ratio [4].
This version of the model is referred to as BEZ2018 H.

Figure 1: Signal path from audio to spike activity.

2.2. Spike Activity Mutual Information Index

SAMII is defined as the averaged mutual information I (S|R)
between the spike activity of the clean speech target S, and the
spike activity of the corresponding noisy speech R.

SAMII =
1

|Z|
∑

(j,k)∈ZI

Ij,k (S|R) , (1)

where j and k are the analysis window and critical band
indices, respectively. |Z| is the number of (j, k) frames where
the clean signal is detected while ZI is a subset of Z where the
mutual information is greater than a threshold.

2.2.1. Temporal an spatial integration

Figure 1 shows a block diagram of how the spike activity (S or
R) is obtained from the speech signal. Left and right ear au-
dio signals are processed independently with BEZ2018 to ob-
tain the spike trains for each ANF. Then, analysis windows of
20 ms with an overlap of 10 ms are used. For every analy-
sis window, an additional binaural representation is obtained by
grouping together the delayed version of the left ear spike trains
and the right ear spike trains. The alignment delay is selected
as the value between -1 ms and 1 ms that results in the lowest
root mean square error (RMSE) between the left and right spike
trains.

To obtain the spike activity, the spike trains are integrated in
windows of 200 µs, grouped by center frequency, and added to-
gether. The result is a matrix of size NCB ×NI , where NCB is
the number of critical bands and NI is the number of integration
windows (NI = 20ms

200µs
= 100).

2.2.2. Mutual information

As seen in equation (1), the mutual information between spike
activities S and R is computed for every (j, k) frame. For prac-
tical reasons, the indices of the analysis window j and critical
band k are removed in the following equations.

Mutual information is obtained with equation (2):

I(S|R) = H(S) +H(R)−H(S,R), (2)



where H(S) and H(R) are the individual entropy of both
spike activities, and H(S,R) is their joint entropy. The indi-
vidual entropy of a generic spike activity T is obtained with
equation (3):

H(T ) = −(ρ · log2 (ρ) + (1− ρ) · log2 (1− ρ)), (3)

where T could be substituted by S or R, and ρ is the prob-
ability of a spike occurring. It is obtained with equation (4):

ρ =
Nspikes,T

NF ·NI
, (4)

where NF is the number of ANFs per critical band.
For the joint entropy between the spike activities S and R,

it is necessary to obtain their joint probability distribution. The
joint probability distribution is obtained with the probabilities
σ(s, r) of all possible events (s, r), which are the absence (0),
or presence (1), of a spike within an integration window l. In
example, σ(0, 1) is the probability of a spike occurring in R,
but not in S, during the same integration window of 200 µs.
Equations (5), (6), (7), and (8) show how those probabilities are
computed.

σ(1, 1) =

∑N1
l min(Sl, Rl)

NF ·NI
. (5)

σ(1, 0) =

∑N1
l max(0, Sl −Rl)

NF ·NI
. (6)

σ(0, 1) =

∑N1
l max(0, Rl − Sl)

NF ·NI
. (7)

σ(0, 0) = 1− σ(1, 1)− σ(1, 0)− σ(0, 1). (8)

Then, the joint entropy is obtained with the following equa-
tion (9):

H(S,R) = −
∑
(s,r)

σ(s, r) · log2 [σ(s, r)]. (9)

2.3. Dataset

The open-set of the training data provided by the first clarity
prediction challenge was chosen to assess the performance of
SAMII and MBSTOI. To perform predictions, a sigmoid func-
tion was fitted to map SAMII and MBSTOI with the correctness
score (percentage of correctly guessed words in a sentence) pro-
vided with the training data.

3. Preliminary Results
The training dataset was divided into a fitting set, and a vali-
dation set. The fitting set was a random selection of 90% of
the training data, living the remaining 10% for the validation
set. The score used to evaluate the proposed speech intelligibil-
ity prediction algorithm was the RMSE between the predictions
and the correctness of the validation set. Figure 2 shows the
obtained fitted curve.

Scores obtained using the two versions of the BEZ2018
model (L and H) are shown in table 1.

Figure 2: Spike activity mutual information index (SAMII) fit-
ting curve.

Table 1: Preliminary root mean square error (RMSE) for each
algorithm

Algorithm preliminary score

MBSTOI (Baseline) 27.35
SAMII + BEZ2018 L 30.36
SAMII + BEZ2018 H 28.76

4. Preliminary Discussion
Results show that the scores obtained with SAMII and the base-
line MBSTOI are similar. This is a favorable finding for the pro-
posed new metric since it is reaching a similar performance than
a well established speech intelligibility metric. Having a closer
look, it is shown the SAMII is very reliable when predicting
high scores, but at low SAMIIs there is more uncertainty. This
is evident in Figure 2, where SAMIIs around 0.002 correspond
to a wide variety of correctness scores. Moreover, the results
show no evidence for a relation between density of ANFs and
performance since both BEZ2018 L and BEZ2018 H obtained
similar scores as well.
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