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Abstract

This report describes the Sheffield system for the 2nd Clar-
ity Enhancement Challenge (CEC2) concerning maximising
speech intelligibility for hearing impaired listeners. The CEC2
database provides a large number of simulated domestic scenes,
each of which contains a target speech degraded by two or
three interfering sources, e.g. domestic noises, music, and other
speech signals. An enhancement system is wanted to produce
an enhanced binaural speech signal given three pairs of binaural
noisy speech signals with an ideal latency within 5 ms.

The Sheffield system consists of a denoising module and an
amplification module. The denoising module aims to suppress
interfering sources and restore target speech, and the amplifi-
cation module is optimised to compensate for hearing losses.
We take advantage of a causal multi-channel densely connected
convolutional U-Net with target speaker extraction for denois-
ing, with a Short-time Fourier Transform (STFT) window intro-
ducing 4 ms latency. For amplification, we use a simple neural
network mapping the audiogram of an impaired ear to a finite
impulse response (FIR) filter, which introduces less than 4 ms
latency. The overall ideal latency of the proposed cascaded sys-
tem thus meets the requirement.

1. Method

The denoising and amplification modules are described in this
section. As shown in Fig 1, a two-stage training strategy is used
in this work, i.e., the two modules are optimised separately with
different loss functions. The denoising module takes a multi-
channel noisy scene signal and a target speaker adaption speech
as input and produces binaural enhanced speech. The amplifica-
tion module takes the denoised speech and audiograms of target
hearing impaired listeners as input, and outputs the overall en-
hanced speech. The echoic target signals of the first binaural
channel are used as the labels.
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Figure 1: Overall workflow of the two-stage training for the
extraction model and the amplification model.

1.1. Denoising module

In the first Clarity Enhancement Challenge (CEC1) [1], speech
enhancement techniques have been demonstrated to benefit
hearing aid systems [2, 3]. Specifically, a deep learning based
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time-domain speech enhancement system with very low-latency
plays a crucial role in the winning system [3]. However, time-
domain neural enhancement systems usually introduce large ar-
tificial distortions to enhanced speech signals. In this work, we
propose a frequency domain enhancement approach, extraction
DenseUNet (Extr-DenseUNet), which exploits speaker identity
information to enhance target speech signals for the hearing aid
system.

The Extr-DenseUNet consists of a speaker embedding net-
work to generate speaker identity representation and a speaker
extraction network that exploits the speaker identity informa-
tion to recover target speaker’s speech component given a noisy
mixture. The speaker embedding network and the extraction
network are trained jointly to optimise a signal reconstruction
loss, i.e., complex spectral mapping (CSM) proposed in [4].
The speech enhancement system directly outputs a binaural sig-
nal.

The speaker embedding network takes as input an enroll-
ment speech signal from a target speaker to generate an embed-
ding vector that represents the speaker identity. Given an en-
rollment speech signal, STFT is applied to transform the signal
to time-frequency (T-F) domain representations, and the mag-
nitude of each T-F bin is used as input features for the speaker
embedding network. The speaker embedding network uses a
temporal convolutional network (TCN) [5] block to model the
input sequential feature. The TCN is built from R repetitions of
a sub-block which stacks X dilated 1-D convolutional blocks.
The output of the TCN is processed by a standard 1-D convolu-
tional layer followed by a time-averaging operation.

The speaker extraction network consists of two compo-
nents: a speaker stack and a separation stack. Given a six-
channel mixture signal, a STFT with 4 ms window length and
2 ms hop length is used to transform the signal to T-F domain
representations with a FFT size of 512. The real and imagi-
nary (RI) components of multi-channel T-F representations are
concatenated as input to the extraction network. The design of
speaker stack is motivated by a time-domain speaker extraction
system [6], which aims to process the speaker representations
to coordinate with the main separation stack. The speaker stack
employs a TCN block and a 2-D convolutional layer to pro-
cess the input multi-channel mixture features. Then, the output
features from the 2-D convolutional layer are modulated with
a target speaker embedding vector through element-wise multi-
plication to obtain the final speaker information features.

The separation stack uses a dense U-Net consisting of an
encoder-decoder structure, which has been successfully devel-
oped for both speech enhancement [4] and speaker extraction
tasks [7]. Both the encoder and decoder are constructed from
four densely connected convolutional blocks. Between the en-
coder and decoder are two TCN blocks to model long-range
temporal information. To received the speaker identity informa-
tion, the features output from the first dense block in the encoder
are concatenated along the channel axis with the speaker infor-



Table 1: Dev set BEHASPI evaluation resullts.

Denoising ‘ Amplification | BEHASPI
Model | Spk | Loss | NAL-R | Optimised |
- - - - - 0.1615
- - - v - 0.2492
MC-ConvTasNet [3] | - SNR | v - 0.3014
Extr-DenseUNet v CSM | v - 0.4209
Extr-DenseUNet v CSM | - v 0.5088

mation features from the speaker stack. All the convolution and
normalisation layers in the extraction network are causal, and
the overall latency of the enhancement system is 4 ms coming
from the STFT.

1.2. Amplification module

The amplification module targets to amplify a denoised speech
signal in a way that help improves the intelligibility. It con-
tains a three layer neural network, which maps an audiogram
to six amplification coefficients at [250, 500, 1000, 2000, 4000,
6000] Hz. The amplification coefficients are then converted to
a FIR filter that is applied to the denoised signal.

Similarly to our CEC1 system, the amplification module is
optimised to maximise the objective evaluation metric, which
is the better-ear HASPIv2 [8] (BEHASPI) in CEC2. A differ-
entiable approximation to HASPIv2 is implemented and used
as the loss function, together with an energy constraint term to
prevent over-amplification, similar to [9]. The DHASPI loss
implementation in this work is a refined version from the one
in [9]. The differences between DHASPI and HASPIv2 are:

» For the purpose of faster optimisation, the IIR gamma-
tone filterbank is replaced by FIR implementation, and
inner-hair cell adaptation and group delay compensation
are not included.

¢ Internal noise are not added as DHASPI is served as an
optimisation objective.

e The alignment within HASPIv2 are not included in
DHASPI, as it is assumed the denoised signals and ref-
erence signals are aligned before amplification.

» The voice activity detection within the feature extraction
process is replaced by zero masking.

* The ensemble of neural networks mapping the ten corre-
lation features to the predicted HASPI scores is replaced
by another re-optimised neural network.

2. Experimental results

The experimental results on the dev set are shown in the Ta-
ble 1. The first two results show the BEHASPI score of
unprocessed speech signals and the NAL-R [10] amplified
speech. The denoising Extr-DenseUNet can outperform the
MC-ConvTasNet [3] in terms of BEHASPI when the amplifica-
tion is the NAL-R fitting. The performance can be further im-
proved when using the proposed optimised amplification mod-
ule.
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