
MULTI-CHANNEL TARGET SPEAKER EXTRACTION WITH REFINEMENT:
THE WAVLAB SUBMISSION TO THE SECOND CLARITY ENHANCEMENT CHALLENGE

Samuele Cornell1,2, Zhong-Qiu Wang2, Yoshiki Masuyama3,2, Shinji Watanabe2
Manuel Pariente4, Nobutaka Ono3
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ABSTRACT

This paper describes our submission to the Second Clarity Enhance-
ment Challenge (CEC2), which consists of target speech enhance-
ment for hearing-aid (HA) devices in noisy-reverberant environments
with multiple interferers such as music and competing speakers. Our
approach builds upon the powerful iterative neural/beamforming en-
hancement (iNeuBe) framework introduced in our recent work, and
this paper extends it for target speaker extraction. We therefore name
the proposed approach as iNeuBe-X, where the “X” stands for ex-
traction. To address the challenges encountered in the CEC2 setting,
we introduce four major novelties: (1) we extend the state-of-the-
art TF-GridNet model [1], originally designed for monaural speaker
separation, for multi-channel, causal speech enhancement, and large
improvements are observed by replacing the TCNDenseNet used in
iNeuBe [2] with this new architecture; (2) we leverage a recent dual
window size approach with future-frame prediction [3] to ensure that
iNueBe-X satisfies the 5 ms constraint on algorithmic latency required
by CEC2; (3) we introduce a novel speaker-conditioning branch for
TF-GridNet to achieve target speaker extraction; and (4) we propose
a fine-tuning step, where we compute an additional loss with respect
to the target speaker signal compensated with the listener audiogram.
Without using external data, on the official development set our best
model reaches a hearing-aid speech perception index (HASPI) score
of 0.942 and a scale-invariant signal-to-distortion ratio improvement
(SI-SDRi) of 18.8 dB. These results are promising given the fact that
the CEC2 data is extremely challenging (e.g., on the development set
the mixture SI-SDR is −12.3 dB). A demo of our submitted system
is available at WAVLab CEC2 demo.

1. PROPOSED METHODS

1.1. iNeuBe-X System Overview

Our proposed iNeuBe-X system is depicted in Fig. 1. It is motivated
by the iNeuBe framework [2], which contains two multi-microphone
input single-microphone output (MISO) DNNs [4], with the first one
producing an initial target estimate for beamforming and the second
one performing post-filtering for better enhancement. One key dif-
ference is that here we condition each MISO DNN with a speaker-
enrollment embedding extracted from a third DNNspk module, which
is jointly trained with the rest and takes as input an enrollment utter-
ance of the target speaker. Given the complex multi-channel short-
time Fourier transform (STFT) spectrogram of the mixture signal, Y ,
the first DNN (denoted as DNN1 in Fig. 1) estimates the complex
STFT spectrogram Ŝ

(n)
1 (at iteration n = 1) of the anechoic target

speech captured at a reference HA array mic, which is set to “CH1
Left” in CEC2. This estimate can then be refined by a second step,
which involves a DNN-supported beamformer, and a second MISO
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Fig. 1: Overview of proposed iNeuBe-X framework. We employ a causal
multi-channel Wiener filter beamformer between DNN1 and DNN2.

DNN1 and the beamformer. This refinement can be iteratively per-
formed, following [2]. Our system is trained to operate with a 32 kHz
sampling rate and with an STFT with 16ms window, 4ms stride, and
the square-root Hann window. This would give such system a theo-
retical latency of 16ms [3]. To overcome this, we train both DNN1

and DNN2 to predict the current plus future 3 frames of the target
anechoic signal, so that a new synthesized frame output can be ob-
tained for each 4ms stride. This is done in practice by padding zeros
to the left of the input mixture STFT. The beamforming operation is
performed in a frame-online fashion to comply with the 5 ms con-
straint on algorithmic latency required in CEC2. We employ a causal
multi-channel Wiener filter as in [2, 3]. Since the listener head can
rotate in CEC2, instead of simply accumulating the statistics, we use
the recursive averaging strategy [5] with a 0.5 forgetting factor.

1.2. Speaker Enrollment Embedding Extraction

For DNNspk, we use the encoder and TCN modules (and remove the
decoder) of the TCNDenseNet architecture [2, 6] to extract speaker
embeddings. As the enrollment utterances are available beforehand,
this DNN can be non-causal and its output can be cached before infer-
ence for each target speaker. Given a complex spectra A of a monau-
ral adaptation utterance, this DNN extracts a fixed-length speaker em-
bedding Xadapt ∈ R128 by performing mean-pooling over time on the
outputs of the TCN module. The speaker embedding is then leveraged
as an additional cue by the iNeuBe framework for target extraction.
Differently from [2,6], we use a smaller DNN, with 3 TCN repeats, 4
TCN blocks, 128 TCN channels, and 16 hidden channels in the down-
sampling Conv2D and DenseNet layers of the encoder. This amounts
to a total of around 0.6million (M) parameters.

1.3. Frame-online Speaker-conditioned MISO-TF-GridNet

For both DNN1 and DNN2 we use TF-GridNet [1], which is a state-
of-the-art separation model that recently achieved an impressive
23.4 dB SI-SDRi on the WSJ0-2mix dataset [7]. Motivated by this
strong result, we extended this model to multi-channel scenarios as

https://popcornell.github.io/WAVLab_CEC2_demo/
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Fig. 2: Proposed frame-online speaker-conditioned MISO-TF-GridNet.

depicted in Fig. 2. Since it uses complex spectral mapping, we feed
all channels by simply stacking the real and imaginary (RI) compo-
nents of all input channels [2] to TF-GridNet, converting it to a MISO
model named as MISO-TF-GridNet. We use feature-wise linear mod-
ulation (FiLM) [8] over the speaker embedding extracted by DNNspk

at the beginning of each TF-GridNet block to condition the separa-
tion. Note that TF-GridNet proposed in [1] is non-causal. Here we
make the following modifications to achieve frame-online process-
ing. Firstly, we use layer normalization (LN) after the first Conv2D
layer. Secondly, we use a causal full-band self-attention module by
masking the attention matrix. Thirdly, we use a modified sub-band
temporal module, where we employ an unidirectional LSTM (instead
of bidirectional as in [1]) and, in the unfolding operation, we stack
only the previous frames’ features with the current. This way, the
sub-band temporal module can output one frame for each frame in
the input if the stride is set to 1.

We use the same hyper-parameters suggested in [1], except that
E is set to 2 here. The resulting TF-GridNet has around 8 M param-
eters and the full iNeube-X model (with DNN1 and DNN2) roughly
doubles that amount.

1.4. STFT-domain NAL-R and Dynamic Range Compression

We found that enhancement alone is not sufficient for obtaining an
high HASPI. Without any compensation to listener’s hearing loss, the
HASPI for the oracle target speech is less than 0.7 on the develop-
ment set. To perform fitting in a frame-online fashion, we perform
the NAL-R fitting [9] and dynamic range compression in the STFT
domain. We followed the dynamic range compression algorithm im-
plemented in [10], and set the knee to -10 dB, threshold -40 dB, ratio
1.2, knee width 4, attack 0.05 s, and release 0.2 s, respectively. As
we use in iNeuBe-X 16 ms STFT windows, the length of the NAL-
R equalization filter was set to 80 taps. When fed the oracle target
anechoic speech, our STFT-domain NAL-R fitting plus compression
algorithms produces an HASPI score of 0.987, which is slightly lower
than the 0.998 score obtained by the CEC2 baseline fitting algorithm.
This is likely due to the shorter NAL-R filter used in our algorithms,
but our oracle score is still acceptable.

1.5. System Training Configurations and External Data Usage

We trained models on two datasets, the original CEC2 data, which we
scaled up to 16k scenes using the provided scene generation script,
and this 16k scenes plus additional 6k scenes generated using the
same configuration except for external clean speech taken from Lib-
riVox in order to increase speaker variations.

Regarding training, we first train DNN1 with DNNspk to conver-
gence, and then freeze these two and train DNN2 using the output of
these two plus the MCWF ouput. As explained in Section 1.1, the two
MISO networks are trained to estimate the target anechoic signal at

Table 1: Results on development set of CEC2.

Approaches SI-SDRi (dB) STOI PESQ HASPI

Challenge baseline (mixture CH1 Left) [11] 0.0 0.563 1.197 0.245
Challenge baseline (oracle CH1 Left) ∞ 1.0 5.0 0.998

BLSTM-WPE+MVDR [12] 10.481 0.743 1.931 0.436
iNeuBe DNN1 [2] 16.567 0.887 1.946 0.723

iNeuBe-X DNN1 17.97 0.92 1.951 0.842
+ DNN2 + NAL-R fine-tune 19.082 0.947 2.269 0.942
+ DNN2 + NAL-R fine-tune + External Data 19.514 0.954 2.336 0.943

CH1 Left from the multi-channel mixture signal using complex spec-
tral mapping. We use the Adam optimizer with 0.001 learning rate
and batch size 1. We clip gradients with L2 norm more than 1. The
MISO DNNs are trained on random 4 s segments of the input signal,
which are constrained in such a way that the target and the interferer-
only beginning part should appear both at least for 1 s. We use the
whole development set for validation. The learning rate is halved
if the validation loss is not improved over 5 epochs. We follow the
scale-invariant loss function suggested in [2], which is defined on the
estimated time-domain signal and its magnitude. Differently from [2],
we use a multi-resolution STFT filterbanks with 512-, 1024-, 2048-,
256- and 128-sample windows to compute multiple magnitude losses.
We observed that the magnitude loss leads to clearly better HASPI.
Since this loss is scale-invariant, to prevent clipping in inference we
re-scale the MISO DNNs’ estimates in a frame-online fashion using
the output of the MCWF.

To further improve HASPI, after training DNN2 to convergence,
we fine-tune DNN2 by adding an additional loss term where the same
multi-resolution loss is computed between NAL-R fitted target ane-
choic speech and NAL-R fitted DNN estimates. Since listener au-
diograms are not available in the training set, we randomly sample
audiograms from the development set listeners to perform this fitting-
aware training.

2. RESULTS ON DEVELOPMENT SET

We report our results obtained on the CEC2 development set in
Table 1 in terms of SI-SDR, STOI, PESQ and HASPI. Note that
SI-SDR, STOI and PESQ are computed before listener adaptation
and compression while HASPI is computed after. Together with the
proposed iNeuBe-X, we also report the performance for two non-
causal methods: iNeube (only DNN1, based on TCNDenseNet) [2]
and a DNN-based masked beamforming approach from the ESPNet-
SE++ toolkit [12], which employs a two-layer bidirectional LSTM
(BLSTM) and weighted prediction error (WPE) followed by min-
imum variance distortionless response (MVDR) beamforming. As
another comparison, we report the scores of the unprocessed mix-
tures and the oracle target speech. The latter can be considered as a
reasonable upper bound for our proposed system, since we employ a
similar compensation strategy. Note that the CEC2 baseline system
does not perform enhancement, and only performs listener adapta-
tion and dynamic range compression. For our proposed systems, we
report performance for various configurations and training strategies
in the third panel: iNeube-X with only DNN1, iNeube-X with DNN2

trained using the additional loss after listener adaptation (+ DNN2

+ NAL-R fine-tune), and with external data (+ DNN2 + NAL-R
fine-tune + External Data). The two latter systems are the ones we
submitted to CEC2. We found that an additional iteration of beam-
forming followed by post-filtering led to slightly better HASPI, at a
cost of increased computational overhead. Thus we only submitted
signals obtained after the first DNN2 refinement step.

We emphasize that our system enjoys an algorithmic latency of 4
ms, and we confirm that the proposed system satisfies the 5ms con-
straint on algorithmic latency using this public code1.

1https://github.com/zqwang7/CausalityCheck
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