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● In a small study, our application of speech 
enhancement helped cochlear implant (CI, a close 
relative of hearing aids) users' speech understanding

● See our Google AI blog post 
(https://ai.googleblog.com/2021/07/applying-advanced
-speech-enhancement-in.html)

Understanding speech in noise is hard
(previous study with cochlear implants)
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● 1) Separate single-microphone audio from left and right into target and interference signals.

Our solution: overview

STFT
(5 ms win)

STFT
(5 ms win)

Single-mic target 
enhancement

Single-mic target 
enhancement

Training loss
(training only)

Ground truth interferer

Ground truth target

Multi-mic input 
mixture

Binaural 
target speech 

STFTs



● 1) Separate single-microphone audio from left and right into target and interference signals.
● 2) Use estimate of target signal to beamform across all 6 mics with 4 context frames.

Our solution: overview
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● 1) Separate single-microphone audio from left and right into target and interference signals.
● 2) Use estimate of target signal to beamform across all 6 mics with 4 context frames.
● 3) Apply linear equalizer using listener audiogram to compensate for hearing loss.

Our solution: overview
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Single-mic enhancement

Single-mic enhancement
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● Causal Conv-TasNet masking network [1] predicts a mask for input STFT.
● Trained on synthetic mixtures of target speech and interferer using TPU (next slide).
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[1] Luo, Yi, and Nima Mesgarani. "Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech separation." IEEE/ACM TASLP 2019



Training for enhancement
● Augmentation on single-microphone audio from Clarity Challenge scenes.
● Leverages cue that target starts after two seconds.
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Training for enhancement
● Trained with consistent [2] multi-resolution compressed STFT loss [3].
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[2] Wisdom, S., Hershey, J. R., Wilson, K., Thorpe, J., Chinen, M., Patton, B., & Saurous, R. A., Differentiable consistency constraints for improved deep speech enhancement, 
ICASSP 2019.
[3] Wilson, K., Chinen, M., Thorpe, J., Patton, B., Hershey, J., Saurous, R. A., Lyon, R. F., Exploring tradeoffs in models for low-latency speech enhancement, IWAENC 2018.



Training for enhancement
● Trained with consistent multi-resolution compressed STFT loss on target and interferer.
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Causal multi-frame RLS beamforming
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Causal multi-frame RLS beamforming
● Optimization problem for filter W to predict target x from input y:

● Non-causal solution:

● Canonical causal recursive solution (no matrix inverses!):



Linear equalizer

Linear equalizer
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Audio demos

Baseline

Our submission (enhancement + 
beamformer + linear equalizer)

Description: male voice target with female voice interferer 
(Scene S07458)

Description: male voice target with noise 
interferer (Scene S08143)

2.0s 
silence

2.7s 
silence

Attenuated but 
non-zero interferer

Target speech onset

Enhancement output 
before beamformer



Audio demos

Noise interferer example:
(i.e. hairdryer, dishwasher, kettle, fan)

Speech interferer example:
(i.e. another male or female voice**)

**interferer begins speaking immediately; 
the target starts speaking after 2 seconds

baseline our submission baseline our submission

Description: male voice target with female 
voice interferer

Description: male voice target with noise 
interferer

Scene S07458Scene TODO



MBSTOI results
Dev baseline:   0.41 mean, 0.41 median
Dev proposed: 0.632 mean, 0.642 median

Eval baseline:   0.310 mean, 0.314 median
Eval proposed: 0.644 mean, 0.6652 median



Listening test results (preliminary)

● For noise interferers, +~40% 
boost in correctness.

○ Direction of improvement 
consistent with MBSTOI.

● For speech interferers, highly 
mixed results.

○ Next slide: investigate 2 
listeners responses
(p218, p219).
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Lister p219 had 0% 
correct and had no 
response to highest 
SNR examples - 
possibly only heard 
one speaker.

Listener p218 seems to 
randomly alternate 

between correct and 
incorrect - possibly 

confusing which speaker 
is target

? denotes examples 
where listener transcript 
differs significantly from 

actual target



Listening test results (preliminary)
● Methodology: for each utterance, I reviewed the 

transcript and ground truth and made binary decision of 
correct or incorrect.

● 8 listeners had total scores near zero
○ 4 gave no responses for the highest SNR utterances, suggesting 

they were listening for the intereferer and got confused when they 
only heard one speaker

○ 2 consistently incorrect, except for one (mid level SNR) utterance 
where they got it correct.

○ 2 consistently got incorrect for all examples, but appeared 
confident in noting many words in each utterance

● 7 listeners had non-zero total scores
○ 2 seem to alternate between incorrect and correct utterance 

transcripts (see p218 and p231)
○ 5 listeners appear to have completely valid responses

● Conclusion: 5 of 15 listeners appear to have completely 
valid responses.



Future work

● Ablations
○ Training augmentation
○ Enhancement-only

● Explore if allowing some noise in the first 2 seconds helps avoid target/interferer 
confusion; more generally, explore if allowing some noise allows listeners to 
adapt and actually enhance intelligibility.

● Real-world target identification methods (not relying on first 2 seconds of 
interferer)

○ Visual
○ Spatial (e.g. direction)
○ Speaker ID

● Should target/interferer speakers be from same dataset?
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