@]l University of Colorado
Boulder

Applying Intelligibility and Quality Metrics
to Noisy Speech, Noise Suppression,
and Hearing Aids

James M. Kates
James.Kates@colorado.edu

Kathryn H. Arehart
Kathryn.Arehart@colorado.edu
University of Colorado, Boulder, CO 80309

Clarity-2021, 16 September 2021


mailto:James.Kates@colorado.edu
mailto:Kathryn.Arehart@colorado.edu

@]l University of Colorado
Boulder

Colleagues and Collaborators

* Melinda Anderson

 Ramesh Kumar Muralimanohar

* Emily Lundberg

* Naomi Croghan

* In-Ki Jin

 Kristen Sommerfeldt

 Song-Hui Chon

* Lewis O. Harvey, Jr.

* Pam Souza (Northwestern U.)
 Varsha Rallapalli (Northwestern U.)



@]l University of Colorado
Boulder

Hearing-Aid Processing

* Typical hearing-aid design
« Multichannel filterbank
« Time-varying gain adjustments in each frequency band

« Gain can improve audibility, but amplitude modulation introduces
nonlinear distortion

* Metrics measure signal changes
* Envelope important for speech intelligibility and quality
« Determine degree to which envelope is modified
« Can also add other signal features: TFS, spectral change
« Want interaction of all hearing-aid signal processing algorithms
« Context of the auditory periphery and hearing loss
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Quantitative Metrics

* Intrusive
« Compare degraded signal to clean reference
« Any change in the degraded signal is considered detrimental
» Degradation includes effects of processing and auditory threshold

* Non-intrusive
« Uses degraded signal alone
» Requires machine model of perception

 This presentation deals with intrusive metrics
» Hearing Aid Speech Perception Index (HASPI): intelligibility
« Hearing Aid Speech Quality Index (HASQI): speech quality
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Metric Construction

« Components
* Model of the auditory periphery
» Speech feature extraction
* Map features to human subject data

* Training data
* Metric tied to the speech materials and sighal degradations used to
train it
» Sentences different mapping than keywords correct
« Low data-rate codecs differ from additive noise
« Extrapolating beyond the training data may be inaccurate



HASPI and HASQI Auditory Model



Model of the Auditory Periphery

» Resample sighal at 24 kHz
» Middle ear bandpass filter 350 to 5000 Hz

 Auditory filterbank
« 32 gammatone filters from 80 to 8000 Hz
« Bandwidth depends on hearing loss and signal level

 Quter hair cell (OHC) dynamic-range compression
« Compression ratio decreases with increasing OHC damage
« Shift in auditory threshold

* Inner hair cell (IHC) neural firing rate adaptation
« Rapid (2 ms) and short-term (60 ms) adaptation
* |[HC damage gives additional threshold shift

(Kates, 2013)
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Gammatone Filters: Normal Hearing
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Gammatone Filters: Max OHC Damage
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OHC Dynamic-Range Compression

QUTPUT, dB Re: Threshold

80 .
Linear
60 |
Slope = 1/CR |
Normal I
40 Hearing i
____________________________ I
| |
Linear I !
20 - ' |
! > !
! Increasing |
! OHC Damage |
0 A | | : L~
P
80 100 120
INPUT, dB SPL

g SN

L

University of Colorado
Boulder



@]l University of Colorado
Boulder

IHC Adaptation

Amplitude, dB SL

0.2 0.4 0.6 0.8 1
Time, sec



@]l University of Colorado
Boulder

Auditory Model Summary

* One peripheral model for all applications
— Intelligibility and quality
— Normal and impaired hearing
* Representation of hearing loss based on audiogram
— Elevated auditory threshold
— Increased auditory filter bandwidth
— Reduced OHC dynamic-range compression
— Reduced amount of two-tone suppression

* Model outputs
— Envelope: Modulated envelope in each band in dB re: threshold

— BM Vibration: Modulated envelope in dB applied to bandpass
signal, includes temporal fine structure in each band



HASPI and HASQI Calculation
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HASPI version 2

» Reference is clean speech, normal-hearing periphery

* Envelope time-frequency modulation analysis
— Peripheral model envelope outputs in dB above threshold
— Lowpass filter at 320 Hz, resample at 2560 Hz (8 x cutoff)
— Remove samples identified as silences in reference

— Fit short-time log spectra with 5 half-cosine basis functions from
Y2 to 2V2 cycles per spectrum => mel-freq cepstral coefficients

— Each coefficient sequence passed through modulation filterbank,
10 bands with center frequencies from 2 to 256 Hz

— 5 basis functions vs time x 10 modulation filters = 50 sequences
— Cross-correlate processed signal with reference for all 50

— Average over 5 basis functions at each modulation rate to get 10

correlation values
(Kates and Arehart, 2014b; Kates and Arehart, 2015; Kates and Arehart, 2021)
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Log Spectrum Basis Functions
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HASPI v2 Neural Network

Fit to HINT or IEEE sentences correct (all 5 keywords)

Conditions: Noise and 6-talker babble, noise suppression, WDRC,
frequency lowering, reverberation and reverb processing

Neural network structure

— Inputs are the 10 averaged modulation rate values
— Single hidden layer, 4 neurons

— Output layer with 1 neuron

— Sigmoid activation function

Ensemble of 10 networks: Bootstrap aggregation (“bagging”)
— Networks fit to 63% of data randomly selected with replacement

— Average outputs of the 10 networks

— Reduced error variance and improved immunity to overfitting
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HASQI version 2

« Reference is clean speech NAL-R, impaired-hearing periphery
* Fit to HINT pair (1 M + 1 F) in noise and babble, linear, nonlinear proc

 Nonlinear term

* Envelope modulation
« Low-pass filter dB envelope in each band
* Measures time-frequency envelope fidelity
« Cepstral correlation

« Temporal fine structure

 Short-time normalized cross-correlation
 Loss of neural firing rate synchronization at high frequencies
 Vibration correlation

« Linear term: differences in long-term spectrum and slope
(Kates and Arehart, 2014a)
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HASQI Cepstral Correlation

Input is envelope in dB

Segment 16-ms windows, 50% overlap => lowpass filter
Remove segments identified as silences in reference

Fit each remaining segment with half-cosine basis functions
Sequences for amplitude of each basis function over time
Cross-correlation of processed with clean reference sequences
C = average over basis functions 2 - 6
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HASQI Vibration Correlation

 Vibration correlation v
— Input is BM vibration
— Segment 16-ms windows, 50% overlap
— Remove silent segments found in reference

— Short-time correlations of processed with reference
segments

— Loss of IHC synchronization 5-pole LP at 3.5 kHz

— Weighting reduces importance of TFS at high frequencies

— Normalize, weight with loss of synchronization, and average
over segments and frequency bands

* Nonlinear term Q. in = cv
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HASQI Linear Term

RMS average envelope outputs in each frequency band

Sum over bands and adjust overall levels to remove loudness
difference between reference and processed signals

Standard deviation of the spectral differences o,
Spectral slope from 15t differences of adjacent bands
Standard deviation of the spectral slope differences o,
Linear model Qpeqr =1-0.5790-0.4210,
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Product of nonlinear and linear terms

QCombined — QNonIin X QLinear

Nonlinear term: Envelope dominates, but TFS also important
Linear term: Spectrum and spectral slope both important
Product: Change in either nonlinear or linear will reduce quality
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Applications
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1. Quality Ratings for Noisy Speech

» Relationship between ratings and envelope modulation
* Ten older adult HI listeners, mild-moderate loss

 Five different noise types: 6-talker babble, 3-talker
conversation, street traffic, kitchen, and fast-food restaurant

* Nine segments for each noise type
 Four SNRs: 3, 8, 12, and 20 dB
» Bilateral hearing-aid simulation: 2 settings x 2 vents per subject

« Quality ratings for HINT M + F sentence pair
— 4 repetitions per processing condition with random noise segment
— Rate 320 stimuli on scale from 0 - 10, converted to 0 - 100 for analysis

(Lundberg et al, 2020)
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2. Single-Microphone Noise Suppression

« Use metrics to compare single-microphone algorithms
— Spectral subtraction, 18 frequency bands
— Spectral subtraction with upward spread of masking
— ldeal binary mask (IBM)
— Restore envelope of noisy speech to match that of clean speech
« Compare noise estimation procedures
— ldeal knowledge of separate speech and noise RMS level fluctuations
— Gives exact SNR in each time-frequency cell, 16-ms raised cos window
— Or replace exact noise values with average over time in each band

* NH, N3 audiogram (moderate flat loss) with gain compensation
* Average over 20 IEEE sentences in 6-talker babble
(Kates, 2017)
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Gain vs SNR Rules

Spectral Subtraction
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Average Noise Power, N3
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3. Commercial Hearing Aid Measurements

« Use metrics to distinguish between commercial devices
« Speech is HINT sentence pair
* Hearing aids

— Three major manufacturers

— Basic and premium model from each
— WDRC, Noise suppression (NS), Frequency lowering (FL)

* Processing: NAL-R, Mild (no NS or FL), Moderate, Maximum
* Two audiograms: 52 (mild sloping), N4 (mod-severe flat)
* Vary SNR (6-talker babble), level of presentation

« Measurements use acoustic test box in sound booth
(Kates et al, 2018)
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SNR, Multi-talker Babble
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Conclusions

* HASPI and HASQI accurate in predicting listener responses
— Same peripheral model for both normal and impaired hearing
— Measure nonlinear distortion, noise, linear response modifications
— Envelope fidelity is important
— Measures complete system, including processing interactions
— Trade-off between audibility and nonlinear distortion

« Limitations
— Derived for monaural headphone listening

— Based on sentence test materials
— Not validated for tonal languages

 MATLAB code free for the asking: James.Kates@colorado.edu
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