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Hearing-Aid Processing

• Typical hearing-aid design
• Multichannel filterbank
• Time-varying gain adjustments in each frequency band
• Gain can improve audibility, but amplitude modulation introduces 

nonlinear distortion

• Metrics measure signal changes
• Envelope important for speech intelligibility and quality 
• Determine degree to which envelope is modified
• Can also add other signal features: TFS, spectral change
• Want interaction of all hearing-aid signal processing algorithms
• Context of the auditory periphery and hearing loss
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Quantitative Metrics

• Intrusive
• Compare degraded signal to clean reference

• Any change in the degraded signal is considered detrimental

• Degradation includes effects of processing and auditory threshold

• Non-intrusive
• Uses degraded signal alone

• Requires machine model of perception

• This presentation deals with intrusive metrics
• Hearing Aid Speech Perception Index (HASPI): intelligibility

• Hearing Aid Speech Quality Index (HASQI): speech quality 
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Metric Construction

• Components
• Model of the auditory periphery

• Speech feature extraction

• Map features to human subject data

• Training data
• Metric tied to the speech materials and signal degradations used to 

train it

• Sentences different mapping than keywords correct

• Low data-rate codecs differ from additive noise

• Extrapolating beyond the training data may be inaccurate
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HASPI and HASQI Auditory Model
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Model of the Auditory Periphery

• Resample signal at 24 kHz

• Middle ear bandpass filter 350 to 5000 Hz

• Auditory filterbank
• 32 gammatone filters from 80 to 8000 Hz
• Bandwidth depends on hearing loss and signal level

• Outer hair cell (OHC) dynamic-range compression
• Compression ratio decreases with increasing OHC damage
• Shift in auditory threshold

• Inner hair cell (IHC) neural firing rate adaptation
• Rapid (2 ms) and short-term (60 ms) adaptation
• IHC damage gives additional threshold shift
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Middle Ear Filter
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Auditory Filter Bandwidth
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Signal Intensity
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Gammatone Filters: Normal Hearing
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Gammatone Filters: Max OHC Damage
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OHC Dynamic-Range Compression
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IHC Adaptation
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Auditory Model Summary

• One peripheral model for all applications 
– Intelligibility and quality

– Normal and impaired hearing

• Representation of hearing loss based on audiogram
– Elevated auditory threshold

– Increased auditory filter bandwidth

– Reduced OHC dynamic-range compression

– Reduced amount of two-tone suppression

• Model outputs
– Envelope: Modulated envelope in each band in dB re: threshold

– BM Vibration: Modulated envelope in dB applied to bandpass 
signal, includes temporal fine structure in each band
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HASPI and HASQI Calculation
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HASPI version 2

• Reference is clean speech, normal-hearing periphery

• Envelope time-frequency modulation analysis
– Peripheral model envelope outputs in dB above threshold

– Lowpass filter at 320 Hz, resample at 2560 Hz (8 x cutoff)

– Remove samples identified as silences in reference

– Fit short-time log spectra with 5 half-cosine basis functions from 
½ to 2½ cycles per spectrum => mel-freq cepstral coefficients

– Each coefficient sequence passed through modulation filterbank, 
10 bands with center frequencies from 2 to 256 Hz

– 5 basis functions vs time x 10 modulation filters = 50 sequences

– Cross-correlate processed signal with reference for all 50

– Average over 5 basis functions at each modulation rate to get 10 
correlation values
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Log Spectrum Basis Functions
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Basis function 2 

applied to the short-

time spectra gives 

spectral tilt as a 

function of time.



HASPI v2 Neural Network

• Fit to HINT or IEEE sentences correct (all 5 keywords)

• Conditions: Noise and 6-talker babble, noise suppression, WDRC, 

frequency lowering, reverberation and reverb processing

• Neural network structure

– Inputs are the 10 averaged modulation rate values

– Single hidden layer, 4 neurons

– Output layer with 1 neuron

– Sigmoid activation function

• Ensemble of 10 networks: Bootstrap aggregation (“bagging”)

– Networks fit to 63% of data randomly selected with replacement

– Average outputs of the 10 networks

– Reduced error variance and improved immunity to overfitting
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HASQI version 2

• Reference is clean speech NAL-R, impaired-hearing periphery

• Fit to HINT pair (1 M + 1 F) in noise and babble, linear, nonlinear proc

• Nonlinear term

• Envelope modulation

• Low-pass filter dB envelope in each band

• Measures time-frequency envelope fidelity

• Cepstral correlation

• Temporal fine structure

• Short-time normalized cross-correlation

• Loss of neural firing rate synchronization at high frequencies

• Vibration correlation

• Linear term: differences in long-term spectrum and slope
20(Kates and Arehart, 2014a)



HASQI Cepstral Correlation

• Input is envelope in dB

• Segment 16-ms windows, 50% overlap => lowpass filter

• Remove segments identified as silences in reference 

• Fit each remaining segment with half-cosine basis functions

• Sequences for amplitude of each basis function over time

• Cross-correlation of processed with clean reference sequences

• c = average over basis functions 2 - 6
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HASQI Vibration Correlation

• Vibration correlation v
– Input is BM vibration

– Segment 16-ms windows, 50% overlap

– Remove silent segments found in reference

– Short-time correlations of processed with reference 
segments

– Loss of IHC synchronization 5-pole LP at 3.5 kHz

– Weighting reduces importance of TFS at high frequencies

– Normalize, weight with loss of synchronization, and average 
over segments and frequency bands

• Nonlinear term
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HASQI Linear Term

• RMS average envelope outputs in each frequency band

• Sum over bands and adjust overall levels to remove loudness 

difference between reference and processed signals

• Standard deviation of the spectral differences σ1
• Spectral slope from 1st differences of adjacent bands

• Standard deviation of the spectral slope differences σ2
• Linear model 
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HASQI v2 Model

• Product of nonlinear and linear terms

• Nonlinear term: Envelope dominates, but TFS also important

• Linear term: Spectrum and spectral slope both important

• Product: Change in either nonlinear or linear will reduce quality
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HASPI and HASQI for LTASS Noise, NH
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Applications
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1. Quality Ratings for Noisy Speech

• Relationship between ratings and envelope modulation

• Ten older adult HI listeners, mild-moderate loss

• Five different noise types: 6-talker babble, 3-talker 
conversation, street traffic, kitchen, and fast-food restaurant

• Nine segments for each noise type

• Four SNRs: 3, 8, 12, and 20 dB

• Bilateral hearing-aid simulation: 2 settings x 2 vents per subject

• Quality ratings for HINT M + F sentence pair
– 4 repetitions per processing condition with random noise segment

– Rate 320 stimuli on scale from 0 – 10, converted to 0 – 100 for analysis
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(Lundberg et al, 2020)



Noise Waveforms
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Averaged Quality Ratings 
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Accuracy of Envelope Modulation Model
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2. Single-Microphone Noise Suppression

• Use metrics to compare single-microphone algorithms
– Spectral subtraction, 18 frequency bands

– Spectral subtraction with upward spread of masking

– Ideal binary mask (IBM)

– Restore envelope of noisy speech to match that of clean speech

• Compare noise estimation procedures
– Ideal knowledge of separate speech and noise RMS level fluctuations

– Gives exact SNR in each time-frequency cell, 16-ms raised cos window

– Or replace exact noise values with average over time in each band

• NH, N3 audiogram (moderate flat loss) with gain compensation

• Average over 20 IEEE sentences in 6-talker babble

31(Kates, 2017)



Gain vs SNR Rules
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Ideal Processing, N3
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Average Noise Power, N3
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3. Commercial Hearing Aid Measurements

• Use metrics to distinguish between commercial devices

• Speech is HINT sentence pair

• Hearing aids
– Three major manufacturers

– Basic and premium model from each

– WDRC, Noise suppression (NS), Frequency lowering (FL)

• Processing: NAL-R, Mild (no NS or FL), Moderate, Maximum

• Two audiograms: S2 (mild sloping), N4 (mod-severe flat)

• Vary SNR (6-talker babble), level of presentation

• Measurements use acoustic test box in sound booth
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(Kates et al, 2018)



SNR, Multi-talker Babble
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Processing Setting
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Conclusions

• HASPI and HASQI accurate in predicting listener responses

– Same peripheral model for both normal and impaired hearing

– Measure nonlinear distortion, noise, linear response modifications

– Envelope fidelity is important

– Measures complete system, including processing interactions

– Trade-off between audibility and nonlinear distortion

• Limitations

– Derived for monaural headphone listening

– Based on sentence test materials

– Not validated for tonal languages

• MATLAB code free for the asking: James.Kates@colorado.edu
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