

# A Two-Stage End-to-End System for Speech-in-Noise Hearing Aid Processing

Zehai Tu, Jisi Zhang, Ning Ma, Jon Barker Department of Computer Science, University of Sheffield, UK





Clarity recap:

- Interferer: noise and speech
- Six channels (three for each ear)
- Hearing impaired listeners
- Target: maximising intelligibility







#### Scene data:

- Training: 6000 scenes, 24 speakers
- Development: 2500 scenes, 10 speakers
- Evaluation: 1500 scenes, 6 speakers

Listener data:

- Pure tone audiograms
- 100 audiograms for training and development
- 50 audiograms for evaluation



Method overview:

- Stage one: optimising *denoising module*
- Stage two: optimising *amplification module*





### Conv-TasNet [1]:

- Designed for single-channel speech separation
- Encoder: 1-D convolution
- Separation: 1-D convolution blocks, skip connections; output masks
- Decoder: 1-D convolution
- Loss: SI-SNR





Multi-channel (MC) Conv-TasNet [2]:

- Spatial encoder (Conv2D) for spatial feature extraction
- Used as the *denoising module*
- Six channels as input to the spatial encoder



Multi-Channel Conv-TasNet block diagram from [2]



#### Stage one:

- Optimising *denoising module*: MC-Conv-TasNet (one for left, and one for right)
- Input: six channels, output: single channel (left or right)
- Target: single channel anechoic signal (left or right)
- SNR loss (SPL matters)





#### Stage two:

- Optimising *amplification module*: Conv-TasNet (E002) or FIR filter (E009)
- Input: single channel, output: single channel (both left or right)
- Hearing loss model: differentiable approximation to MSBG model
- STOI + loudness loss
- Joint optimisation







#### Initial evaluation (with L0001 only):

| Denoising<br>module | Amplification<br>module | Joint optimisation | MBSTOI | DBSTOI |
|---------------------|-------------------------|--------------------|--------|--------|
| Baseline            | Baseline                | -                  | 0.414  | -      |
| MC-Conv-TasNet      | Baseline                | -                  | 0.545  | 0.650  |
| MC-Conv-TasNet      | Conv-TasNet             | True               | 0.645  | 0.836  |
| MC-Conv-TasNet      | Conv-TasNet<br>(E002)   | False              | 0.651  | 0.827  |
| MC-Conv-TasNet      | FIR (E009)              | False              | 0.646  | 0.766  |





#### Final objective evaluation (MBSTOI):

| Method   | Speech interferer |      | Noise interferer |      | Overall |      |
|----------|-------------------|------|------------------|------|---------|------|
|          | Median            | Mean | Median           | Mean | Median  | Mean |
| Baseline | 0.33              | 0.34 | 0.28             | 0.29 | 0.31    | 0.31 |
| E002     | 0.70              | 0.70 | 0.67             | 0.67 | 0.69    | 0.69 |
| E009     | 0.74              | 0.73 | 0.69             | 0.69 | 0.72    | 0.71 |





#### Final subjective evaluation:

| Method   | Correctness (per cent) |                  |         |  |  |
|----------|------------------------|------------------|---------|--|--|
|          | Speech interferer      | Noise interferer | Overall |  |  |
| Baseline | 43.98                  | 30.30            | 37.13   |  |  |
| E009     | 61.88                  | 81.03            | 71.45   |  |  |







Subjective evaluation

![](_page_12_Picture_0.jpeg)

![](_page_12_Picture_1.jpeg)

[1] Luo Y, Mesgarani N. Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech separation[J]. IEEE/ACM transactions on audio, speech, and language processing, 2019, 27(8): 1256-1266.

[2] Zhang J, Zorilă C, Doddipatla R, et al. On end-to-end multi-channel time domain speech separation in reverberant environments[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020: 6389-6393.