

Submissions E016, E019, E021

Combining binaural LCMP beamforming and deep multi-frame filtering for joint dereverberation and interferer reduction in the Clarity-2021 Challenge

September 17, 2021 – <u>Marvin Tammen, Henri Gode</u>, Hendrik Kayser, Eike J. Nustede, Nils L. Westhausen, Jörn Anemüller, Simon Doclo

- 1 Algorithm Description
 - Overview
 - Weighted Binaural LCMP Beamformer
 - Deep Binaural Multi-Frame MVDR Filter
 - Hearing Loss Compensation

3 Conclusions

Slide 2 of 25 September 17, 2021

Algorithm Description (Overview)

- reduce late reverberation and interferer
- preserve target speaker

- reduce interferer residuals
- preserve target speaker

Slide 3 of 25 September 17, 2021

Carl von Ossietzky Universität Oldenburg

1 Algorithm Description

Overview

Weighted Binaural LCMP Beamformer

Deep Binaural Multi-Frame MVDR Filter

Hearing Loss Compensation

2 Experimental Results

3 Conclusions

Slide 4 of 25 Sul

Submissions E016, E019, E021

Slide 5 of 25

September 17, 2021

Motivation and Goal of wBLCMP Beamformer

MPDR

- Minimizing output power
- Preserve target (distortionless constraint)
 - Target RTF required

Motivation and Goal of wBLCMP Beamformer

wMPDR¹

- Minimizing output power
- Preserve target (distortionless constraint)
 - Target RTF required
- Dereverberation
 - Multi-frame approach
 - Iterative reweighted optimization (weights β)

Motivation and Goal of wBLCMP Beamformer

wLCMP²

- Minimizing output power
- Preserve target (distortionless constraint)
 - Target RTF required
- Dereverberation
 - Multi-frame approach
 - Iterative reweighted optimization (weights β)
- Suppressing interferer with factor δ (2nd constraint)
 - Interferer RTF required

Motivation and Goal of wBLCMP Beamformer

wLCMP + ADD-ONs³

- Minimizing output power
- Preserve target (distortionless constraint)
 - Target RTF required
- Dereverberation
 - Multi-frame approach
 - Iterative reweighted optimization (weights β)
- Suppressing interferer with factor δ (2nd constraint)
 - Interferer RTF required
- Controlling the sparsity using shape parameter p
- Recursive algorithm with smoothing constant γ
- Binaural output

Slide 8 of 25 September 17, 202

Submissions E016, E019, E021

M Tammen, H Gode, H Kayser, EJ Nustede, NL Westhausen, J Anemüller, S Doclo - University of Oldenburg

³Gode, Tammen, and Doclo 2021; Jukić et al. 2015.

Weighted Binaural LCMP Beamformer

Optimization Goal

■ Minimizing a sparse version of the output power (ℓ_p -norm)

• Shape parameter *p* controls the sparsity

$$\mathcal{C}\left(\bar{\mathbf{w}}_{m,t}\right) = \sum_{n=1}^{t} \gamma^{t-n} |z_{m,n}|^{p} = \sum_{n=1}^{t} \gamma^{t-n} \left|\bar{\mathbf{w}}_{m,t}^{\mathrm{H}} \bar{\mathbf{y}}_{t}\right|^{p}$$

smoothing factor γ , shape parameter p

Slide 9 of 25 September 17, 2021

Submissions E016, E019, E021

Weighted Binaural LCMP Beamformer

Optimization Goal

■ Minimizing a sparse version of the output power (ℓ_p -norm)

• Shape parameter *p* controls the sparsity

$$\mathcal{C}\left(\bar{\mathbf{w}}_{m,t}\right) = \sum_{n=1}^{t} \gamma^{t-n} |z_{m,n}|^{p} = \sum_{n=1}^{t} \gamma^{t-n} \left|\bar{\mathbf{w}}_{m,t}^{\mathrm{H}} \bar{\mathbf{y}}_{t}\right|^{p}$$

Linear constraints using RTFs

Combined constraint formulation

$$ar{\mathbf{w}}_{m,t}^{\mathrm{H}} ilde{\mathbf{C}} \stackrel{!}{=} \begin{bmatrix} \mathbf{1} \\ \delta \end{bmatrix}$$

smoothing factor γ , shape parameter p,

target RTF ãm,

interferer RTF $\tilde{\mathbf{b}}_m$, RTF matrix $\tilde{\mathbf{C}}_m = \begin{bmatrix} \tilde{\mathbf{a}}_m & \tilde{\mathbf{b}}_m \end{bmatrix}$

Slide 9 of 25 September 17, 2021

Submissions E016, E019, E021

September 17, 2021

Weighted Binaural LCMP Beamformer Using IRLS

Iterative solution

Reweighted cost function of l2-norm subproblem

$$\mathcal{C}\left(\bar{\mathbf{w}}_{m,t,i}\right) = \sum_{n=1}^{t} \gamma^{t-n} \beta_{n,i} |z_{m,n,i}|^2$$

weights $\beta_{n,i}$, smoothing factor γ , shape parameter p

Submissions E016, E019, E021

September 17, 2021

Weighted Binaural LCMP Beamformer Using IRLS

Iterative solution

Reweighted cost function of l2-norm subproblem

$$\mathcal{C}\left(\bar{\mathbf{w}}_{m,t,i}\right) = \sum_{n=1}^{t} \gamma^{t-n} \beta_{n,i} |z_{m,n,i}|^2$$

1 Filter update:
$$\mathbf{\bar{w}}_{m,t,i} = \mathbf{\bar{R}}_{y,t,i}^{-1} \mathbf{\tilde{C}}_m \left[\mathbf{\tilde{C}}_m^{\mathrm{H}} \mathbf{\bar{R}}_{y,t,i}^{-1} \mathbf{\tilde{C}}_m \right]^{-1} \begin{bmatrix} 1\\ \delta \end{bmatrix}$$

weights $\beta_{n,i}$, smoothing factor γ , shape parameter p

Submissions E016, E019, E021

Weighted Binaural LCMP Beamformer Using IRLS

Iterative solution

Reweighted cost function of l2-norm subproblem

$$\mathcal{C}\left(\bar{\mathbf{w}}_{m,t,i}\right) = \sum_{n=1}^{t} \gamma^{t-n} \beta_{n,i} |z_{m,n,i}|^2$$

1 Filter update:
$$\mathbf{\bar{w}}_{m,t,i} = \mathbf{\bar{R}}_{y,t,i}^{-1} \mathbf{\tilde{C}}_m \left[\mathbf{\tilde{C}}_m^{\mathrm{H}} \mathbf{\bar{R}}_{y,t,i}^{-1} \mathbf{\tilde{C}}_m \right]^{-1} \begin{bmatrix} 1 \\ \delta \end{bmatrix}$$

• Using weighted covariance matrix $\mathbf{\bar{R}}_{y,t,i} = \sum_{n=1}^{t} \gamma^{t-n} \beta_{n,i} \mathbf{\bar{y}}_n \mathbf{\bar{y}}_n^{\mathrm{H}}$

weights $\beta_{n,i}$, smoothing factor γ , shape parameter p

Submissions E016, E019, E021

Weighted Binaural LCMP Beamformer Using IRLS

Iterative solution

Reweighted cost function of l2-norm subproblem

$$\mathcal{C}\left(\bar{\mathbf{w}}_{m,t,i}\right) = \sum_{n=1}^{t} \gamma^{t-n} \beta_{n,i} |z_{m,n,i}|^2$$

1 Filter update:
$$\mathbf{\bar{w}}_{m,t,i} = \mathbf{\bar{R}}_{y,t,i}^{-1} \mathbf{\tilde{C}}_m \left[\mathbf{\tilde{C}}_m^{\mathrm{H}} \mathbf{\bar{R}}_{y,t,i}^{-1} \mathbf{\tilde{C}}_m \right]^{-1} \begin{bmatrix} 1 \\ \delta \end{bmatrix}$$

• Using weighted covariance matrix $\mathbf{\bar{R}}_{y,t,i} = \sum_{n=1}^{t} \gamma^{t-n} \beta_{n,i} \mathbf{\bar{y}}_n \mathbf{\bar{y}}_n^T$

2 Weight update:
$$\beta_{n,i+1} = \frac{1}{|z_{m,n,i}|^{2-p}} = \frac{1}{|\mathbf{\bar{w}}_{m,n,i}^{H}\mathbf{\bar{y}}_{n}|^{2-p}}$$

weights $\beta_{n,i}$, smoothing factor γ , shape parameter p

Submissions E016, E019, E021

^{Carl von Ossietzky} Universität Oldenburg

Practical Implementation of Weighted Binaural LCMP Beamformer

Estimating RTFs and weighted covariance matrix

- Interferer RTF estimated within first 2 s
- Target RTF estimated and updated from 2s on using covariance whitening

^{Carl von Ossietzky} Universität Oldenburg

Practical Implementation of Weighted Binaural LCMP Beamformer

- Estimating RTFs and weighted covariance matrix
 - Interferer RTF estimated within first 2 s
 - Target RTF estimated and updated from 2 s on using covariance whitening

Algorithm and framework parameters

- Frame length: 5 ms
- Frame shift: 2.5 ms

^{Carl von Ossietzky} Universität Oldenburg

Practical Implementation of Weighted Binaural LCMP Beamformer

- Estimating RTFs and weighted covariance matrix
 - Interferer RTF estimated within first 2 s
 - Target RTF estimated and updated from 2 s on using covariance whitening

- Algorithm and framework parameters
 - Frame length: 5 ms
 - Frame shift: 2.5 ms
 - Interferer suppression: $\delta = 0.1$
 - Smoothing constant: $\gamma = 1$
 - Shape parameter: p = 0.5

Universität Oldenburg

Algorithm Description 1

- Overview
- Weighted Binaural LCMP Beamformer
- Deep Binaural Multi-Frame MVDR Filter
- Hearing Loss Compensation
- **Experimental Results** 2
- Conclusions 3

Submissions E016 E019 E021 September 17, 2021

Slide 12 of 25

MVDR	multi-frame MVDR
multi-microphone, single- frame	single-microphone, multi- frame

	MVDR	multi-frame MVDR
utilized correlations	multi-microphone, single- frame spatial	single-microphone, multi- frame temporal

	MVDR	multi-frame MVDR
utilized correlations speech component	multi-microphone, single- frame spatial $\mathbf{x}_{f,t} = S_{f,t} \mathbf{v}_{f,t}$	single-microphone, multi- frame temporal $\mathbf{x}_{f,t} = S_{f,t} \gamma_{f,t}$

	MVDR	multi-frame MVDR
utilized correlations speech component	multi-microphone, single- frame spatial $\mathbf{x}_{f,t} = S_{f,t} \mathbf{v}_{f,t}$ $\mathbf{v}_{f,t}$: signal-independent, easier to estimate	single-microphone, multi- frame temporal $\mathbf{x}_{f,t} = S_{f,t}\gamma_{f,t}$ $\gamma_{f,t}$: signal-dependent, more difficult to estimate

	MVDR	multi-frame MVDR
utilized correlations	multi-microphone, single- frame spatial	single-microphone, multi- frame temporal
speech component	$\mathbf{x}_{f,t} = S_{f,t} \mathbf{v}_{f,t}$ $\mathbf{v}_{f,t}$: signal-independent, easier to estimate	$\mathbf{x}_{f,t} = S_{f,t} \gamma_{f,t}$ $\gamma_{f,t}$: signal-dependent, more difficult to estimate
optimization goal	minimize undesired power while preserving <i>spatial</i> speech correla- tions $\mathbf{v}_{f,t}$	minimize undesired power while preserv- ing <i>temporal</i> speech correlations $\gamma_{f,t}$

	MVDR	multi-frame MVDR
utilized correlations	multi-microphone, single- frame spatial	single-microphone, multi- frame temporal
speech component	$\mathbf{x}_{f,t} = S_{f,t} \mathbf{v}_{f,t}$ $\mathbf{v}_{f,t}$: signal-independent, easier to estimate	$\mathbf{x}_{t,t} = S_{f,t} \gamma_{f,t}$ $\gamma_{f,t}$: signal-dependent, more difficult to estimate
optimization goal	$\begin{array}{llllllllllllllllllllllllllllllllllll$	minimize undesired power while preserv- ing <i>temporal</i> speech correlations $\gamma_{f,t}$
binaural extension	preserve speech correla	tions at left and right ear

Deep Binaural MFMVDR Filter

Optimization Goal

minimize undesired power spectral density while

$$\mathbf{w}^{\mathrm{BMFMVDR}\{l,r\}} = \underset{\mathbf{w}^{\{l,r\}}}{\operatorname{argmin}} \mathbf{w}^{\{l,r\}^{H}} \mathbf{\Phi}_{\mathbf{n}}^{\{l,r\}} \mathbf{w}^{\{l,r\}}$$

Slide 14 of 25 September 17, 2021

Deep Binaural MFMVDR Filter

Optimization Goal

minimize undesired power spectral density while preserving left and right correlated speech components:

$$\mathbf{w}^{\mathrm{BMFMVDR}\{l,r\}} = \underset{\mathbf{w}^{\{l,r\}}}{\operatorname{argmin}} \mathbf{w}^{\{l,r\}^{H}} \mathbf{\Phi}_{\mathbf{n}}^{\{l,r\}} \mathbf{w}^{\{l,r\}}, \quad \mathrm{s.t.} \quad \mathbf{w}^{\{l,r\}^{H}} \boldsymbol{\gamma}_{\mathbf{x}}^{\{l,r\}} = \mathbf{1}$$

Deep Binaural MFMVDR Filter

Optimization Goal

minimize undesired power spectral density while preserving left and right correlated speech components:

$$\mathbf{w}^{\text{BMFMVDR}\{l,r\}} = \underset{\mathbf{w}^{\{l,r\}^{H}}}{\operatorname{argmin}} \mathbf{w}^{\{l,r\}^{H}} \mathbf{\Phi}_{\mathbf{n}}^{\{l,r\}} \mathbf{w}^{\{l,r\}}, \quad \text{s.t.} \quad \mathbf{w}^{\{l,r\}^{H}} \gamma_{\mathbf{x}}^{\{l,r\}} = 1$$
$$= \frac{\Phi_{\mathbf{u}}^{\{l,r\}^{-1}} \gamma_{\mathbf{x}}^{\{l,r\}}}{\gamma_{\mathbf{x}}^{\{l,r\}^{H}} \Phi_{\mathbf{u}}^{\{l,r\}^{-1}} \gamma_{\mathbf{x}}^{\{l,r\}}}$$

Deep Binaural MFMVDR Filter

Optimization Goal

minimize undesired power spectral density while preserving left and right correlated speech components:

$$\begin{split} \mathbf{w}^{\text{BMFMVDR}\{l,r\}} &= \underset{\mathbf{w}^{\{l,r\}}}{\operatorname{argmin}} \mathbf{w}^{\{l,r\}^{H}} \mathbf{\Phi}_{\mathbf{n}}^{\{l,r\}} \mathbf{w}^{\{l,r\}}, \quad \text{s.t.} \quad \mathbf{w}^{\{l,r\}^{H}} \gamma_{\mathbf{x}}^{\{l,r\}} = 1 \\ &= \frac{\mathbf{\Phi}_{\mathbf{u}}^{\{l,r\}^{-1}} \gamma_{\mathbf{x}}^{\{l,r\}}}{\gamma_{\mathbf{x}}^{\{l,r\}^{H}} \mathbf{\Phi}_{\mathbf{u}}^{\{l,r\}^{-1}} \gamma_{\mathbf{x}}^{\{l,r\}}} \end{split}$$

• $\Phi_{u}^{\{l,r\}}, \gamma_{x}^{\{l,r\}}$ estimated using DNNs

Slide 14 of 25 September 17, 202

Deep Binaural MFMVDR Filter

Optimization Goal

minimize undesired power spectral density while preserving left and right correlated speech components:

$$\mathbf{w}^{\text{BMFMVDR}\{l,r\}} = \underset{\mathbf{w}^{\{l,r\}}}{\operatorname{argmin}} \mathbf{w}^{\{l,r\}^{H}} \mathbf{\Phi}_{\mathbf{n}}^{\{l,r\}} \mathbf{w}^{\{l,r\}}, \quad \text{s.t.} \quad \mathbf{w}^{\{l,r\}^{H}} \gamma_{\mathbf{x}}^{\{l,r\}} = 1$$
$$= \frac{\Phi_{\mathbf{u}}^{\{l,r\}^{-1}} \gamma_{\mathbf{x}}^{\{l,r\}}}{\gamma_{\mathbf{x}}^{\{l,r\}^{H}} \Phi_{\mathbf{u}}^{\{l,r\}^{-1}} \gamma_{\mathbf{x}}^{\{l,r\}}}$$

Φ^{I,r}_u, γ^{I,r}_x estimated using DNNs
binaural extension of Tammen and Doclo 2021

Slide 14 of 25 September 17, 202

Submissions E016, E019, E021

September 17, 2021

Deep Binaural MFMVDR Filter: Block Diagram

covariance matrices $\widehat{\Phi}_{f y}$ and $\widehat{\Phi}_{f u}^{\{l,r\}}$

DNN inputs: concatenated (binaural) STFT log magnitude & cos of phase

Slide 15 of 25 September 17, 2021

covariance matrices $\widehat{\Phi}_{f y}$ and $\widehat{\Phi}_{f u}^{\{l,r\}}$

DNN inputs: concatenated (binaural) STFT log magnitude & cos of phase

DNN is trained using speech enhancement loss

Slide 15 of 25 September 17, 2021

a-priori SNR $\hat{\xi}^{\{l,r\}}$

DNN inputs: logarithm of noisy STFT magnitudes

Slide 15 of 25 September 17, 2021

a-priori SNR $\hat{\xi}^{\{l,r\}}$

DNN inputs: logarithm of noisy STFT magnitudes

DNN is trained using speech enhancement loss

Slide 15 of 25 September 17, 2021

speech inter-frame correlation (IFC) vector $\widehat{\gamma}_{ extsf{x}}^{\{l,r\}}$

$$\widehat{\gamma}_{\mathbf{x}}^{\{l,r\}} = \frac{1 + \widehat{\xi}^{\{l,r\}}}{\widehat{\xi}^{\{l,r\}}} \frac{\widehat{\Phi}_{\mathbf{y}} \mathbf{e}^{\{l,r\}}}{\mathbf{e}^{\{l,r\}^{\top}} \widehat{\Phi}_{\mathbf{y}} \mathbf{e}^{\{l,r\}}} - \frac{1}{\widehat{\xi}^{\{l,r\}}} \frac{\widehat{\Phi}_{\mathbf{u}}^{\{l,r\}} \mathbf{e}^{\{l,r\}}}{\mathbf{e}^{\{l,r\}} \widehat{\Phi}_{\mathbf{u}}^{\{l,r\}} \mathbf{e}^{\{l,r\}}}$$

Slide 15 of 25 September 17, 2021

Submissions E016, E019, E021

Deep Binaural MFMVDR Filter: Block Diagram

deep binaural MFMVDR filter

$$\mathbf{w}^{\mathrm{BMFMVDR}\{l,r\}} = \frac{\widehat{\Phi}_{\mathsf{u}}^{\{l,r\}^{-1}} \widehat{\gamma}_{\mathsf{x}}^{\{l,r\}}}{\widehat{\gamma}_{\mathsf{x}}^{\{l,r\}^{H}} \widehat{\Phi}_{\mathsf{u}}^{\{l,r\}^{-1}} \widehat{\gamma}_{\mathsf{x}}^{\{l,r\}}}$$

Slide 15 of 25 September 17, 2021

Submissions E016, E019, E021

Deep Binaural MFMVDR Filter: Block Diagram

filter

$$\mathbf{z} = \begin{bmatrix} Z' \\ Z' \end{bmatrix} = \begin{bmatrix} \mathbf{w}^{\mathrm{BMFMVDR}\{I\}^{H}} \mathbf{y} \\ \mathbf{w}^{\mathrm{BMFMVDR}\{r\}^{H}} \mathbf{y} \end{bmatrix}$$

Slide 15 of 25 September 17, 2021

Submissions E016, E019, E021

same STFT parameters as wBLCMP

- same STFT parameters as wBLCMP
- filter length $N = 4 \rightarrow 12.5 \,\mathrm{ms}$ context

- same STFT parameters as wBLCMP
- filter length $N = 4 \rightarrow 12.5 \,\mathrm{ms}$ context
- DNN architecture:

Slide 1

- same STFT parameters as wBLCMP
- filter length $N = 4 \rightarrow 12.5 \,\mathrm{ms}$ context
- DNN architecture:
 - causal temporal convolutional network⁴

Slide 1

September 17, 2021

- same STFT parameters as wBLCMP
- filter length $N = 4 \rightarrow 12.5 \,\mathrm{ms}$ context
- DNN architecture:
 - causal temporal convolutional network⁴
 - receptive field size of 2.56 s > 2 s

- same STFT parameters as wBLCMP
- filter length $N = 4 \rightarrow 12.5 \,\mathrm{ms}$ context
- DNN architecture:
 - causal temporal convolutional network⁴
 - receptive field size of 2.56 s > 2 s
 - 2 stacks of 8 layers, kernel size 3 \rightarrow 3.02 M parameters

- same STFT parameters as wBLCMP
- filter length $N = 4 \rightarrow 12.5 \,\mathrm{ms}$ context
- DNN architecture:
 - causal temporal convolutional network⁴
 - receptive field size of 2.56 s > 2 s
 - 2 stacks of 8 layers, kernel size 3 \rightarrow 3.02 M parameters
- DNN training:

- same STFT parameters as wBLCMP
- filter length $N = 4 \rightarrow 12.5 \,\mathrm{ms}$ context
- DNN architecture:
 - causal temporal convolutional network⁴
 - receptive field size of 2.56 s > 2 s
 - 2 stacks of 8 layers, kernel size 3 \rightarrow 3.02 M parameters
- DNN training:
 - official Clarity-2021 training data

September 17, 2021

- same STFT parameters as wBLCMP
- filter length $N = 4 \rightarrow 12.5 \,\mathrm{ms}$ context
- DNN architecture:
 - causal temporal convolutional network⁴
 - receptive field size of 2.56 s > 2 s
 - 2 stacks of 8 layers, kernel size 3 ightarrow 3.02 M parameters
- DNN training:
 - official Clarity-2021 training data
 - scale-invariant signal-to-distortion-ratio loss function

September 17, 2021

- same STFT parameters as wBLCMP
- filter length $N = 4 \rightarrow 12.5 \,\mathrm{ms}$ context
- DNN architecture:
 - causal temporal convolutional network⁴
 - receptive field size of 2.56 s > 2 s
 - 2 stacks of 8 layers, kernel size 3 ightarrow 3.02 M parameters
- DNN training:
 - official Clarity-2021 training data
 - scale-invariant signal-to-distortion-ratio loss function
 - AdamW optimizer, learning rate 10⁻³, 67 epochs, batch size 4

Carl von Ossietzky Universität Oldenburg

1 Algorithm Description

- Overview
- Weighted Binaural LCMP Beamformer
- Deep Binaural Multi-Frame MVDR Filter
- Hearing Loss Compensation
- 2 Experimental Results
- 3 Conclusions

Slide 17 of 25 September 17, 2021

Submissions E016, E019, E021

Hearing Loss Compensation

1 submission E016:

"half-gain rule (HGR)": simple hearing loss (HL)-dependent **broadband gain**, i.e., $HGR = \frac{1}{6}(HL_{500 Hz} + HL_{1000 Hz} + HL_{2000 Hz})$

Hearing Loss Compensation

1 submission E016:

"half-gain rule (HGR)": simple hearing loss (HL)-dependent broadband gain, i.e., $HGR = \frac{1}{6}(HL_{500 Hz} + HL_{1000 Hz} + HL_{2000 Hz})$

2 submissions E019, E021:

baseline multi-band dynamic range compressor (DRC): **frequency- and HL-dependent gain**, compressive Camfit prescription rule⁵

Slide 19 of 25

Algorithms Summary

	E016	E019	E021
beamformer	\checkmark	\checkmark	\checkmark
deep post-filter	×	\times	\checkmark
HL compensation	broadband gain	baselir	ne DRC

- 1 Algorithm Description
 - Overview
 - Weighted Binaural LCMP Beamformer
 - Deep Binaural Multi-Frame MVDR Filter
 - Hearing Loss Compensation

Slide 20 of 25 September 17, 2021

Submissions E016, E019, E021 M Tammen, H Gode, H Kayser, EJ Nustede, NL Westhausen, J Anemüller, S Doclo – University of Oldenburg

Experimental Results – Objective Evaluation

- all submitted systems outperform baseline system
- insignificant differences between submitted algorithms

E016	E019	E021
√ × broadband gain	√ × baselin	√ √ ● DBC
	E016 ✓ × broadband gain	E016 E019 × × broadband gain baselin

Figure: hearing loss-dependent MBSTOI results, development dataset

Submissions E016, E019, E021 M Tammen, H Gode, H Kayser, EJ Nustede, NL Westhausen, J Anemüller, S Doclo – University of Oldenburg

Slide 21 of 25

September 17, 2021

Experimental Results – Objective Evaluation

- all submitted systems outperform baseline system
- insignificant differences between submitted algorithms

	E016	E019	E021
beamformer	\checkmark	√	√
deep post-filter	×	×	√
HL compensation	broadband gain	baselin	he DRC

Figure: hearing loss-dependent MBSTOI results, evaluation dataset

Experimental Results – Subjective Evaluation

- all submitted systems outperform baseline system
- drastic drop in correctness for system E021 in some interfering speaker scenarios

	E019	E021
beamformer deep post-filter	✓ ×	\$ \$
HL compensation	baselin	e DRC

Figure: listening test results, evaluation dataset

Submissions E016, E019, E021 M Tammen, H Gode, H Kayser, EJ Nustede, NL Westhausen, J Anemüller, S Doclo – University of Oldenburg

^{Carl von Ossietzky} Universität Oldenburg

Slide 23 of 25

September 17, 2021

Experimental Results – Subjective Evaluation

Figure: listening test results per listener, evaluation dataset

Slide 24 of 25

Experimental Results – Audio Demos

system		#	interfering speech	interfering noise
input signals baseline		1 2	\land	$\Delta \Delta$
E016 E019 E021	beamformer + broadband gain beamformer + baseline DRC beamformer + deep post-filter + baseline DRC	3 4 5	$\land \land \land$	$\land \land \land$
			S08501, L104	S08502, L106

Slide 25 of 25

September 17, 2021

Conclusions

proposed combinations of beamformer, DNN-based post-filter, and hearing loss compensation modules

Slide 25 of 25

September 17, 2021

Conclusions

- proposed combinations of beamformer, DNN-based post-filter, and hearing loss compensation modules
- all submitted systems achieved considerable objective and subjective intelligibility improvements, outperforming baseline system

Conclusions

- proposed combinations of beamformer, DNN-based post-filter, and hearing loss compensation modules
- all submitted systems achieved considerable objective and subjective intelligibility improvements, outperforming baseline system
- MBSTOI scores:
 - similar performance of all systems

Conclusions

- proposed combinations of beamformer, DNN-based post-filter, and hearing loss compensation modules
- all submitted systems achieved considerable objective and subjective intelligibility improvements, outperforming baseline system
- MBSTOI scores: similar performance of all systems
- listening test results:

DNN-based post-filter may degrade performance in some scenarios

Conclusions

- proposed combinations of beamformer, DNN-based post-filter, and hearing loss compensation modules
- all submitted systems achieved considerable objective and subjective intelligibility improvements, outperforming baseline system
- MBSTOI scores: similar performance of all systems
- listening test results:

DNN-based post-filter may degrade performance in some scenarios

Thank you for your attention!

Submissions E016, E019, E021 M Tammen, H Gode, H Kayser, EJ Nustede, NL Westhausen, J Anemüller, S Doclo – University of Oldenburg

Slide 26 of 25 September 17, 202 ^{Carl von Ossietzky} Universität Oldenburg

Slide 27 of 25

September 17, 2021

Weighted Binaural LCMP Beamformer

Convolutional signal model per STFT-bin (frequency index omitted)

Filter length L, prediction delay τ , target clean speech $s_{x,t}$, interferer clean signal $s_{n,t}$, target ATF \mathbf{a}_l , interferer ATF \mathbf{b}_l ,

ATF matrix $\mathbf{C}_{I} = \begin{bmatrix} \mathbf{a}_{I} & \mathbf{b}_{I} \end{bmatrix}$

Submissions E016, E019, E021

^{Carl von Ossietzky} Universität Oldenburg

Slide 27 of 25

September 17, 2021

Weighted Binaural LCMP Beamformer

Convolutional signal model per STFT-bin (frequency index omitted)

Convolutional beamformer $\bar{\mathbf{w}}_{m,t}$

$$z_{m,t} = \bar{\mathbf{w}}_{m,t}^{\mathrm{H}} \bar{\mathbf{y}}_{t} \quad \text{with} \quad \bar{\mathbf{y}}_{t} = \begin{bmatrix} \mathbf{y}_{t}^{\mathrm{T}} & \mathbf{y}_{t-\tau}^{\mathrm{T}} & \mathbf{y}_{t-\tau-1}^{\mathrm{T}} & \cdots & \mathbf{y}_{t-L+1}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}}$$

Filter length *L*, prediction delay τ , target clean speech $s_{x,t}$, interferer clean signal $s_{n,t}$, target ATF \mathbf{a}_l , interferer ATF \mathbf{b}_l , ATF matrix $\mathbf{C}_l = \begin{bmatrix} \mathbf{a}_l & \mathbf{b}_l \end{bmatrix}$

Submissions E016, E019, E021

Weighted Binaural LCMP Beamformer

Optimization Goal

• Minimizing a sparse version of the output power (ℓ_p -norm)

• Shape parameter *p* controls the sparsity

$$\mathcal{C}\left(\bar{\mathbf{w}}_{m,t}\right) = \sum_{n=1}^{t} \gamma^{t-n} |z_{m,n}|^{\rho} = \sum_{n=1}^{t} \gamma^{t-n} \left|\bar{\mathbf{w}}_{m,t}^{\mathrm{H}} \bar{\mathbf{y}}_{t}\right|^{\rho}$$

smoothing factor γ , shape parameter p

Slide 28 of 25 September 17, 2021

Submissions E016, E019, E021

Weighted Binaural LCMP Beamformer

Optimization Goal

■ Minimizing a sparse version of the output power (ℓ_p -norm)

Shape parameter p controls the sparsity

$$\mathcal{C}\left(\bar{\mathbf{w}}_{m,t}\right) = \sum_{n=1}^{t} \gamma^{t-n} |z_{m,n}|^{p} = \sum_{n=1}^{t} \gamma^{t-n} \left|\bar{\mathbf{w}}_{m,t}^{\mathrm{H}} \bar{\mathbf{y}}_{t}\right|^{p}$$

Linear constraints using RTFs

- Distortionless constraint for target $\mathbf{\bar{w}}_{m,t}^{\mathrm{H}}\mathbf{\tilde{a}} \stackrel{!}{=} 1$
- Suppressing constraint for interferer $\mathbf{\bar{w}}_{m,t}^{\mathrm{H}}\mathbf{\tilde{b}} \stackrel{!}{=} \delta$

smoothing factor γ , shape parameter p, target RTF \tilde{a}_m , interferer RTF \tilde{b}_m

Submissions E016, E019, E021

Weighted Binaural LCMP Beamformer

Optimization Goal

■ Minimizing a sparse version of the output power (ℓ_p -norm)

• Shape parameter *p* controls the sparsity

$$\mathcal{C}\left(\bar{\mathbf{w}}_{m,t}\right) = \sum_{n=1}^{t} \gamma^{t-n} |z_{m,n}|^{p} = \sum_{n=1}^{t} \gamma^{t-n} \left|\bar{\mathbf{w}}_{m,t}^{\mathrm{H}} \bar{\mathbf{y}}_{t}\right|^{p}$$

Linear constraints using RTFs

Combined constraint formulation

$$ar{\mathbf{w}}_{m,t}^{\mathrm{H}} ilde{\mathbf{C}} \stackrel{!}{=} \begin{bmatrix} \mathbf{1} \\ \delta \end{bmatrix}$$

smoothing factor γ , s

shape parameter p, target RTF $\tilde{\mathbf{a}}_m$,

interferer RTF $\tilde{\mathbf{b}}_m$, RTF matrix $\tilde{\mathbf{C}}_m = \begin{bmatrix} \tilde{\mathbf{a}}_m & \tilde{\mathbf{b}}_m \end{bmatrix}$

Slide 29 of 25 September 17, 2021

Submissions E016, E019, E021

Weighted Binaural LCMP Beamformer Using IRLS

Iterative solution

Reweighted cost function of l2-norm subproblem

$$\mathcal{C}\left(\bar{\mathbf{w}}_{m,t,i}\right) = \sum_{n=1}^{t} \gamma^{t-n} \beta_{n,i} |z_{m,n,i}|^2$$

weights $\beta_{n,i}$

Submissions E016, E019, E021 M Tammen, H Gode, H Kayser, EJ Nustede, NL Westhausen, J Anemüller, S Doclo – University of Oldenburg

Slide 30 of 25 September 17, 2021

Weighted Binaural LCMP Beamformer Using IRLS

Iterative solution

Reweighted cost function of l2-norm subproblem

$$\mathcal{C}\left(\bar{\mathbf{w}}_{m,t,i}\right) = \sum_{n=1}^{t} \gamma^{t-n} \beta_{n,i} |z_{m,n,i}|^2$$

1 Filter update:
$$\mathbf{\bar{w}}_{m,t,i} = \mathbf{\bar{R}}_{y,t,i}^{-1} \mathbf{\tilde{C}}_m \left[\mathbf{\tilde{C}}_m^{\mathrm{H}} \mathbf{\bar{R}}_{y,t,i}^{-1} \mathbf{\tilde{C}}_m \right]^{-1} \begin{bmatrix} 1\\ \delta \end{bmatrix}$$

weights $\beta_{n,i}$

Submissions E016, E019, E021 M Tammen, H Gode, H Kayser, EJ Nustede, NL Westhausen, J Anemüller, S Doclo – University of Oldenburg

Slide 30 of 25 September 17, 2021

Weighted Binaural LCMP Beamformer Using IRLS

Iterative solution

Reweighted cost function of l2-norm subproblem

$$\mathcal{C}\left(\bar{\mathbf{w}}_{m,t,i}\right) = \sum_{n=1}^{t} \gamma^{t-n} \beta_{n,i} |z_{m,n,i}|^2$$

1 Filter update:
$$\mathbf{\bar{w}}_{m,t,i} = \mathbf{\bar{R}}_{y,t,i}^{-1} \mathbf{\tilde{C}}_m \left[\mathbf{\tilde{C}}_m^{\mathrm{H}} \mathbf{\bar{R}}_{y,t,i}^{-1} \mathbf{\tilde{C}}_m \right]^{-1} \begin{bmatrix} \mathbf{1} \\ \delta \end{bmatrix}$$

• Using weighted covariance matrix $\mathbf{\bar{R}}_{y,t,i} = \sum_{n=1}^{t} \gamma^{t-n} \beta_{n,i} \mathbf{\bar{y}}_n \mathbf{\bar{y}}_n^T$

weights $\beta_{n,i}$

Submissions E016, E019, E021 M Tammen, H Gode, H Kayser, EJ Nustede, NL Westhausen, J Anemüller, S Doclo – University of Oldenburg

Slide 30 of 25 September 17, 2021
Slide 30 of 25

September 17, 2021

Weighted Binaural LCMP Beamformer Using IRLS

Iterative solution

Reweighted cost function of l2-norm subproblem

$$\mathcal{C}\left(\bar{\mathbf{w}}_{m,t,i}\right) = \sum_{n=1}^{t} \gamma^{t-n} \beta_{n,i} |z_{m,n,i}|^2$$

1 Filter update:
$$\mathbf{\bar{w}}_{m,t,i} = \mathbf{\bar{R}}_{y,t,i}^{-1} \mathbf{\tilde{C}}_m \left[\mathbf{\tilde{C}}_m^{\mathrm{H}} \mathbf{\bar{R}}_{y,t,i}^{-1} \mathbf{\tilde{C}}_m \right]^{-1} \begin{bmatrix} 1 \\ \delta \end{bmatrix}$$

• Using weighted covariance matrix $\mathbf{\bar{R}}_{y,t,i} = \sum_{n=1}^{t} \gamma^{t-n} \beta_{n,i} \mathbf{\bar{y}}_n \mathbf{\bar{y}}_n^T$

2 Weight update:
$$\beta_{n,i+1} = \frac{1}{|z_{m,n,i}|^{2-p}} = \frac{1}{|\bar{\mathbf{w}}_{m,n,i}^{\mathrm{H}}\bar{\mathbf{y}}_{n}|^{2-p}}$$

weights $\beta_{n,i}$

Submissions E016, E019, E021

M Tammen, H Gode, H Kayser, EJ Nustede, NL Westhausen, J Anemüller, S Doclo - University of Oldenburg

^{Carl von Ossietzky} Universität Oldenburg

Deep Binaural MFMVDR Filter: Covariance Matrices

Input: DNN output vector $\mathbf{h}_{\nu} \in \mathbb{R}^{4N^2}$ Output: Hermitian-PSD matrix $\widehat{\Phi}_{\nu} \in \mathbb{C}^{2N \times 2N}$

Slide 31 of 25 September 17, 2021

Submissions E016, E019, E021

M Tammen, H Gode, H Kayser, EJ Nustede, NL Westhausen, J Anemüller, S Doclo - University of Oldenburg

^{Carl von Ossietzky} Universität Oldenburg

Deep Binaural MFMVDR Filter: Covariance Matrices

Input: DNN output vector $\mathbf{h}_{\nu} \in \mathbb{R}^{4N^2}$ **Output:** Hermitian-PSD matrix $\widehat{\Phi}_{\nu} \in \mathbb{C}^{2N \times 2N}$ fill main diagonal (2*N* real-valued coefficients);

M Tammen, H Gode, H Kayser, EJ Nustede, NL Westhausen, J Anemüller, S Doclo - University of Oldenburg

Slide 31 of 25

Deep Binaural MFMVDR Filter: Covariance Matrices

Input: DNN output vector $\mathbf{h}_{\nu} \in \mathbb{R}^{4N^2}$ **Output:** Hermitian-PSD matrix $\widehat{\Phi}_{\nu} \in \mathbb{C}^{2N \times 2N}$ fill main diagonal (2*N* real-valued coefficients); fill strictly upper triangle with real components $(\frac{2N(2N+1)}{2} = \frac{(2N)^2 - 2N}{2}$ real-valued coefficients);

Slide 31 of 25

Deep Binaural MFMVDR Filter: Covariance Matrices

Input: DNN output vector $\mathbf{h}_{\nu} \in \mathbb{R}^{4N^2}$ **Output:** Hermitian-PSD matrix $\widehat{\Phi}_{\nu} \in \mathbb{C}^{2N \times 2N}$ fill main diagonal (2*N* real-valued coefficients); fill strictly upper triangle with real components $(\frac{2N(2N+1)}{2} = \frac{(2N)^2 - 2N}{2}$ real-valued coefficients); fill strictly upper triangle with imaginary components (also $\frac{(2N)^2 - 2N}{2}$ real-valued coefficients);

Deep Binaural MFMVDR Filter: Covariance Matrices

Input: DNN output vector $\mathbf{h}_{\nu} \in \mathbb{R}^{4N^2}$ **Output:** Hermitian-PSD matrix $\widehat{\Phi}_{..} \in \mathbb{C}^{2N \times 2N}$ fill main diagonal (2N real-valued coefficients); fill strictly upper triangle with real components $(\frac{2N(2N+1)}{2} = \frac{(2N)^2 - 2N}{2}$ real-valued coefficients): fill strictly upper triangle with imaginary components (also $\frac{(2N)^2-2N}{2}$ real-valued coefficients); make Hermitian: $\mathbf{H}_{\nu} \leftarrow \mathbf{H}_{\nu} + \mathbf{H}_{\nu}^{H}$:

Deep Binaural MFMVDR Filter: Covariance Matrices

Input: DNN output vector $\mathbf{h}_{\nu} \in \mathbb{R}^{4N^2}$ **Output:** Hermitian-PSD matrix $\widehat{\Phi}_{..} \in \mathbb{C}^{2N \times 2N}$ fill main diagonal (2N real-valued coefficients); fill strictly upper triangle with real components $(\frac{2N(2N+1)}{2} = \frac{(2N)^2 - 2N}{2}$ real-valued coefficients): fill strictly upper triangle with imaginary components (also $\frac{(2N)^2-2N}{2}$ real-valued coefficients); make Hermitian: $\mathbf{H}_{\nu} \leftarrow \mathbf{H}_{\nu} + \mathbf{H}_{\nu}^{H}$: make PSD: $\widehat{\Phi}_{\nu} = \mathbf{H}_{\nu}\mathbf{H}_{\nu}^{H}$;

Submissions E016, E019, E021 M Tammen, H Gode, H Kayser, EJ Nustede, NL Westhausen, J Anemüller, S Doclo – University of Oldenburg

Slide 3

Deep Binaural MFMVDR Filter: Covariance Matrices

Input: DNN output vector $\mathbf{h}_{\nu} \in \mathbb{R}^{4N^2}$ **Output:** Hermitian-PSD matrix $\widehat{\Phi}_{..} \in \mathbb{C}^{2N \times 2N}$ fill main diagonal (2N real-valued coefficients); fill strictly upper triangle with real components $(\frac{2N(2N+1)}{2} = \frac{(2N)^2 - 2N}{2}$ real-valued coefficients): fill strictly upper triangle with imaginary components (also $\frac{(2N)^2-2N}{2}$ real-valued coefficients); make Hermitian: $\mathbf{H}_{\nu} \leftarrow \mathbf{H}_{\nu} + \mathbf{H}_{\nu}^{H}$; make PSD: $\widehat{\Phi}_{\nu} = \mathbf{H}_{\nu}\mathbf{H}_{\nu}^{H}$; \rightarrow in total, $2N + 2\frac{(2N)^2 - 2N}{2} = 4N^2$ real-valued coefficients required

Slide 32 of 25

Hearing Loss Compensation Parameters

	E016	E019	E021
output gain (dB)	HGR	10	10
maximum output level (dB)		120	120
soft clipper attack time (s)		0.002	0.001
soft clipper decay time (s)		0.01	0.01
soft clipper threshold (dB)	117	117	117