Machine Listening in Dynamic Environments

Dr Christine Evers
University of Southampton, School of Electronics & Computer Science
17 September 2021
Data Challenge
Sound Source LOCALisation & TrAking (LOCATA)

<table>
<thead>
<tr>
<th>Static Loudspeakers</th>
<th>Moving Human Talkers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>Single</td>
</tr>
<tr>
<td>Fixed</td>
<td>Task 1</td>
</tr>
<tr>
<td>Moving</td>
<td>-</td>
</tr>
</tbody>
</table>

Development dataset
- Multichannel recordings + close-talking mouth signals
- Ground-truth positions & orientations for all sources and microphones
- Voice activity labels for each source

Evaluation dataset
- Multichannel recordings for all tasks and arrays
- Ground-truth data for array positions and orientations

LOCATA Data Challenge

Sound Sources:
- Tasks 1 & 2: Static loudspeakers
- Tasks 2 – 6: Moving human talkers

Microphone Arrays:
- Pseudospherical robot head (12 mics)
- Spherical Eigenmike (32 mics)
- Siemens Signia hearing aids in head-torso simulator (4 mics)
- Planar DICIT array (15 mics)

Close-talking mouth signals:
- DPA d:screet SC4060

LOCATA Data Challenge

OptiTrack system (10 synchronized IR cameras)
- Position & orientation of all sources & arrays across time and space

Synchronization:
- Audio data + tracking data: 120 Hz

LOCATA Evaluation

Task 1
Static Source
Static Mic Arrays

Task 6
Moving Sources
Moving Mic Arrays
Challenges

01 Source motion

02 Competing sources

03 Ego-motion
LOCATA - Moving Source

Task 1
Static Source

Task 3
Moving Source

Clarity Workshop, Sep’ 2021
Christine Evers: “Machine Listening in Dynamic Environments”
Spatio-Temporal Variations

Avg human walking speed: 1.4 m/s
Spatio-Temporal Variations

- Frequency [kHz]
- Time [s]

\[\phi_t \]
Spatio-Temporal Variations

Frequency [kHz]

Time [s]

ϕ_{t+1}
Spatio-Temporal Variations

\[\phi_{t+2} \]
LOCATA: Impact of source inactivity

Spatio-temporal correlations

\[p(\phi_t | x_{1:t-1} ; r_t) = \int p(\phi_t | \phi_{t-1} ; r_{t-1:t}) p(\phi_{t-1} | x_{1:t-1} ; r_{t-1}) d\phi_{t-1} \]

Current posterior pdf \[p(\phi_t | x_{1:t} ; r_t) \propto p(\phi_t | \phi_{t-1} ; r_{t-1:t}) p(\phi_t | x_{1:t-1} ; r_{t-1}) \]

Predictive pdf

\[t : \text{Time frame index}; \ \phi_t : \text{Source state}; \ r_t : \text{Robot state}; \ x_t : \text{Data at time frame } t \]

Christine Evers: "Machine Listening in Dynamic Environments"
Challenges

01 Source motion

02 Competing sources

03 Ego-motion
Christine Evers: "Machine Listening in Dynamic Environments"
LOCATA - Competing sources

Task 1
Static Source

Task 4
Multiple moving sources

Clarity Workshop, Sep’ 2021
Christine Evers: “Machine Listening in Dynamic Environments”
LOCATA: Impact of source ambiguity

Task 4, Recording 4, Submission ID 4 - Multiple moving sources

Personally identifying features

A. Hogg, C. Evers, P. Naylor, “Multichannel Overlapping Speaker Segmentation Using Multiple Hypothesis Tracking Of Acoustic And Spatial Features,” ICASSP 2021
LOCATA: Impact of source cardinality

Task 6, Recording 2, Submission ID 4 - Multiple moving sources

Uncertainty in source cardinality

Random set of sources: $\Phi_t = \{\phi_t^{(1)}, \ldots, \phi_t^{(N_t)}\}$

$$p(\Phi_t | x_{1:t}, r_t) = p(\emptyset | x_{1:t}, r_t) + \sum_{p \in P} p\left(\{\phi_t^{(p(1))}, \ldots, \phi_t^{(p(|p|))}\} | x_{1:t}, r_t\right)$$

t: Time frame; r_t: Robot state; x_t: Data at frame t; Φ_t: Set of source states at frame t; $\phi_t^{(n)}$: State of source n; P: Set of partitions of Φ_t

Challenges

01. Source motion
02. Competing sources
03. Ego-motion
Stabilising perception in ego-motion

LOCATA - Competing sources

Task 1
Static Source

Task 6
Moving microphones

Unknown Source-Sensor Distance

\[
p(\phi_t | x_{1:t-1}; r_t) = \int p(\phi_t | \phi_{t-1}; r_{t-1}) p(\phi_{t-1} | x_{1:t-1}; r_{t-1}) \, d\phi_{t-1}
\]

\[
p(\phi_t | x_{1:t}; r_t) \propto p(x_t | \phi_t; r_t) p(\phi_t | x_{1:t-1}; r_t)
\]

\(t\) : Time frame index; \(\phi_t\) : Source state; \(r_t\) : Robot state; \(x_t\) : Data at time frame \(t\)

Clarity Workshop, Sep’ 2021

Christine Evers: “Machine Listening in Dynamic Environments”
\[p(S_t, r_t | x_{1:t}, y_{1:t}) \approx p(r_t | y_{1:t}) \prod_{m=1}^{M_t} p(\omega_{t,m} | r_t) \lambda(s_t | r_t, \Omega_{1:t}) \]

- \(t \): Time frame; \(r_t \): Robot state; \(x_t \): Data at frame \(t \); \(\omega_t \): Source detections; \(y_t \): IMU data;
- \(S_t \): Set of Cartesian source states at frame \(t \); \(s_t^{(n)} \): Cartesian position of source \(n \); \(P \): Set of partitions of \(S_t \)

Challenges impacting on machine listening in dynamic scenarios:

- **Source motion:**
 - Spatio-temporal variations, prohibiting batch-processing of recordings
 - Source inactivity, leading to estimation bias and false estimates

- **Competing sources:**
 - Overlapping speech, resulting in ambiguity in the source identities
 - Uncertainty in the number of sources, resulting in a combinatorial problem

- **Ego-motion:**
 - Unknown source-sensor distance, required for reference frame transformations
 - Unknown self-position, prohibitive for coherent integration of long-term memory
Thank you