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Overview

Environmental mismatch

• Over the last few decades, a great amount of research has been done on various
aspects and properties of speech signals.

• However, improving the intelligibility for both human listening and machine
recognition in real acoustic conditions remains a highly challenging task.
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Mean squared error (MSE) and L1 losses aim to minimize the differences of 
enhanced and target and do not directly consider human perception and ASR 
performance.
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• Conventional deep learning based speech enhancement  models are trained using the L1 norm or L2 norm 
(MSE)

• Mean squared error (MSE) and L1 losses aim to minimize the difference between enhanced and target speech 
signals and do not directly consider human perception and ASR performance.

• In this work, we aim to exploit well-known short-time objective intelligibility (STOI) metric as an objective 
function to train audio-visual models to increase speech intelligibility. 



• STOI-based Objective Function [1][2]
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The intermediate intelligibility measure is defined as the
correlation coefficient between the temporal envelopes of the clean
and degraded speech

The objective function can be represented as
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Fig. 1. Intelligibility-oriented Audio-only Speech Enhancement Framework
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Fig. 2. Proposed Intelligibility-oriented Audio-visual (AV) Speech Enhancement Framework
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Proposed I-O Audio-visual (AV) Speech Enhancement Framework 



• Unlike the original (classical and extended) STOI measures, which down 
sample signals to 10kHz, carry out silent frame removal, and then apply short-
time Fourier transform (STFT), we modified STOI to account for 16kHz signals 
in the frequency domain and ignored silent frame removal. 

• Scatter plots below show our modified STOI correlates well with extended 
STOI and can be used for training AV DL models

• C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen. "A Short-Time Objective Intelligibility Measure for Time-Frequency Weighted Noisy Speech.“ in Proc. ICASSP 2010, Texas, Dallas.
• J. Jensen and C. H. Taal, "An Algorithm for Predicting the Intelligibility of Speech Masked by Modulated Noise Maskers“, IEEE Transactions on Audio, Speech and Language

Processing, 2016.

Classical STOI, Extended STOI vs Modified STOI



Training:

GRID/AV Speech dataset:

Total Number of Speakers: 34/33 
Number of Utterances/speaker = 1000

Noise Types = BUS, STR, PED, CAF (CHiME-3 background noises)
SNR = [-12, 9] step of 3 dB

Training set: 1000 (utt.) x 20 (speakers) = 20,000 noisy utterances.
Validation set: 20,000 noisy utterances x 0.1 = 2000 noisy utterances.

Testing:

ASPIRE database

I-O AV speech enhancement setup

Experimental Setup



Fig. 4. The FCN structure used in the paper. For the GRID dataset, 
we used the same setup as reported in [1], i.e., K=7 and F=30. 
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I-O AV DL Architecture 

Experimental Setup

Fig. 3. Utterance-based raw waveform enhancement by fully convolutional 
neural network (FCN) [1].

For I-O AV SE, we are currently extending our MSE based benchmark AV CochleaNet model ([2] [3])
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• Extended A-only to AV – preliminary results 

• Example I-O AV enhanced utterance:

• Full comparative results of I-O vs MSE based AV SE will be reported in 
the full paper (including an on-line evaluation demo)
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