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▪ The speech enhancement system is a binaural end-to-end audio source separation 
framework that connects information between hearing aids

▪We investigate the effect of applying attention mechanisms to improve binaural audio 
source separation
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Introduction



▪ The ability to process the information available in pressure waves arriving at the two ears is 
called binaural hearing

▪ Binaural unmasking is the ability that the binaural hearing system has to enhance target 
sound sources when spatially separated from interferers [Ira J. Hirsh, 1948]

▪ The binaural system exploits two binaural cues:
▪ Interaural time differences (ITDs) 
▪ Interaural level differences (ILDs)
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Binaural Hearing
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▪Hearing loss can cause a degradation in the ability of exploiting binaural cues [S. C. Hogan, D. 

R. Moore, 2003]

▪ Binaural impairment can cause :

▪ Poor speech intelligibility performance in noisy conditions when compared with a 

healthy hearing system

▪ Poor sound localization abilities when compared to a healthy hearing system
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Binaural Impairment
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▪We aim at developing a speech enhancement system that uses inputs from both hearing 
sides

▪ The system should share information between sides, inspired by the binaural system, to 
exploit binaural cues

▪We propose a deep neural network architecture which shares information between sides  
through intermediate layers that we will refer to as “attention layers“, inspired by other 
successful attention mechanisms used in other domains [A. Vaswan, 2017]

▪We hypothesize that an algorithm that uses attention layers will yield better objective 
performance compared to a system that does not use them
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Motivation
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▪We propose a binaural speech enhancement system built upon a well known 
single-channel speech separation algorithm: TasNet [Y. Luo and N. Mesgarani, 2019]

17.09.2021

Methods: The architecture

▪ The encoder maps a segment of the mixture waveform to a high-dimensional 
representation
▪ The temporal convolution network (TCN) calculates a multiplicative function (i.e., a mask) 

for the desired target source
▪ The decoder decoder reconstructs the source waveforms from the masked features
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▪We propose a binaural speech enhancement system built upon a well known 
single-channel speech separation algorithm: TasNet [Y. Luo and N. Mesgarani, 2019]
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Methods: The architecture

(N, L)

(S, L)

(N, L)

Softmax

7Binaural Speech Enhancement Based on Deep Attention Layers



Binaural Speech Enhancement Based on Deep Attention Layers17.09.2021

Independent model

Methods: The architecture
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Single Attention model

Methods: The architecture
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Double Attention 
model

Methods: The architecture
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Binaural Speech Enhancement Based on Deep Attention Layers

▪ Intermediate layers that perform element wise dot product to the latent representations of 
the signals in each side:

▪ They do not introduce trainable parameters

Source code implemented in TensorFlow [M. Abadi et.al., 2015] available online at: https://github.com/APGDHZ/BinAttSE
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Methods: Attention layers
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Methods: Hyperparameters
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The input filter size 
of 16 samples 
causes an 
algorithmic latency 
of 2ms for an input 
signal sampled at 
8kHz
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Methods: Hyperparameters
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Binaural Speech Enhancement Based on Deep Attention Layers

▪ 8 Model sizes were selected for training (S = {4,8,16,32,128,256,512,1024}) to investigate the effect 
of the attention/skip connection size
▪ Each model was trained 5 times to account for variance related to random initialization
▪ The models were trained for a maximum of 100 epochs using early stopping with a patient of 5 

epochs looking at the validation set
▪ 4-second long audio sections corresponding to the front mic, sampled at 8kHz were used for training
▪ The learning rate was halved if the accuracy of the validation set did not improve during 3 

consecutive epochs
▪ For the optimization, Adam [D. P. Kingma et.al., 2015] was used to maximize the scale invariant 

source-to-noise-ratio (SI-SNR) [J. L. Roux et.al., 2019]
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Methods: Training
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▪ SI-SNR as a function of the number of attention layers and attention size
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Results: SI-SDR
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▪MBSTOI  [A. H. Andersen et.al., 2018] scores as a function of the number of attention layers and 
attention size for the validation dataset
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Results: Validation MBSTOI
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▪MBSTOI  [A. H. Andersen et.al., 2018] scores as a function of the number of attention layers and 
attention size for the evaluation dataset, for different interferer types [I. Demirsahin et.al., 2020]
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Results: Evaluation MBSTOI
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▪Due to a suboptimal individualized hearing loss compensation our algorithm obtained 
worse performance than the baseline provided
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Results: Speech Tests
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▪ In this work we present a binaural speech enhancement method based on deep binaural 
attention layers

▪Noise reduction amount seems to be proportional to the number of attention layers, being 
significantly higher using a double attention system when compared to a non-attentive 
one

▪We observed a threshold above which larger attention size yields poorer performance

▪ Future work should investigate other attention mechanisms such a additive attention to 
reduce computational cost
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Conclusions
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