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Abstract

In this paper we present our algorithms submitted to the Clarity-
2021 Challenge [1], aiming at improving speech intelligibility
for hearing-impaired listeners in a reverberant acoustic scenario
with a target speaker and an interfering speaker. The algorithms
consist of a weighted binaural linearly-constrained-minimum-power
beamformer, performing simultaneous dereverberation and
interferer reduction, a deep binaural multi-frame filter to reduce
residual interference, and a dynamic range compression stage for
audiogram-based hearing loss compensation. For all submitted
systems the MBSTOI results indicate a significant improvement
compared with the baseline system.

1. Algorithm description

Figure [T]depicts the block diagram of the proposed algorithms, con-
sisting of a binaural beamformer (see Section|T.)), an optional deep
learning-based post-processing stage (see Section[I.2) and dynamic
range compression (see Section [I.3). The combination of these
algorithmic blocks into the three systems submitted to the challenge
will be explained in more detail in Section[2] Before processing, the
microphone signals have been resampled from 44.1 kHz to 16 kHz.

1.1. Weighted binaural LCMP beamformer

Aiming at preserving the target speaker, reducing the interfering
speaker and preserving the binaural cues of both speakers, we used
an adaptive version of the weighted binaural linearly-constrained-
minimum-power (WBLCMP) beamformer proposed in [2]. The
wBLCMP beamformer unifies weighted prediction error (WPE)
dereverberation and binaural LCMP beamforming [3, 4] to
simultaneously perform dereverberation and interferer reduction.
Similarly as in [3], the convolutional beamformer is optimized using
a sparsity-promoting ¢,-norm cost function, leading to an iterative
reweighted least squares (IRLS) algorithm. In each iteration, the
M (Lp—741) x 2-dimensional convolutional binaural beamformer
H;, with ¢ the time frame index, M the number of microphones
(M =6), Ly, the filter length and 7 the prediction delay, is given
in each STFT frequency bin as
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Figure 1: Block diagram of the proposed algorithms, consisting
of a weighted binaural LCMP beamformer, an optional deep
learning-based post-processing stage (deep binaural MFMVDR
filter) and dynamic range compression.
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where R; is a weighted covariance matrix of the microphone

. = T . T T T . .
signals ¥+ = [Yt Yier o Yi-L, +J , C; contains the relative
transfer functions (RTFs) of the target speaker and the interfering
speaker, ¢ is a parameter determining the amount of interferer
reduction, and ey, and er are selection vectors corresponding to
the left and right frontal microphones on the hearing aids. The RTF
of the interfering speaker is computed as the normalized principal
eigenvector of the covariance matrix estimated during the first
2 seconds (only interferer active), whereas the RTF of the target
speaker is adaptively estimated using the covariance whitening
method [6] after 2 seconds (target and interferer active).

For the STFT framework we used a frame length of 80 samples
(corresponding to 5ms), a square-root Hann window, and a frame
shift of 40 samples in a weighted-overlap-add processing scheme.
We used the following parameters: filter length Lj, =8, prediction
delay 7 = 2, shape parameter p = 0.5, and interferer reduction
parameter § =0.1.

1.2. Deep binaural MFMVDR filter

Aiming at reducing residual interference at the output of the
wBLCMP beamformer while preserving the correlated speech
components, we used a binaural extension of the deep multi-frame
minimum-variance-distortionless-response  (MFMVDR) filter
proposed in [7], termed deep binaural MEMVDR (BMFMVDR)
filter. Similarly to [7], the required parameters of the BMFMVDR
filter, i.e., the covariance matrices and the speech interframe
correlation vectors, are estimated by minimizing the scale-dependent
signal-to-distortion-ratio [8|] loss function at the output of the
BMFMVDR filter using causal temporal convolutional networks
(TCNs). A PyTorch implementation of the BMFMVDR filter will
be made publicly available.

For the STFT framework we used the same parameters as for
the wWBLCMP beamformer. The deep BMFMVDR filter used a
filter length of 4, and it was trained on the official Clarity-2021
Challenge training data for 67 epochs using the AdamW optimizer
with an initial learning rate of 10~ (which was halved after 3
consecutive epochs without validation loss improvement), a weight
decay of 1072, and a batch size of 4 using an NVIDIA GeForce®



RTX 3090 graphics card. For the employed TCNs, we used 2 stacks
of 8 layers each, with a kernel size of 3, resulting in a temporal
receptive field of about 2.56s and 3.02M parameters.

1.3. Dynamic range compression

The dynamic range compression (DRC) stage is used for
audiogram-based compensation of hearing loss and further level
adjustments. It consists of a spectral-domain multi-band dynamic
range compressor (MBDRC) that implements a noise gate,
frequency- and hearing-loss-dependent amplification and limitation
of the maximum output level, and a volume control at the output.
As an alternative to MBDRC, the "half-gain rule” (HGR) was
used for hearing loss compensation, i.e., only volume control
was applied set to the pure-tone average of 500 Hz, 1000 Hz, and
2000 Hz divided by 2. The system also takes care of calibration and
soft-clipping of the output audio signal, with settings adopted from
the challenge baseline system. The STFT and filterbank parameters
and the noise gate levels for the MBDRC were adopted from the
challenge baseline system. The gains applied in the MBDRC were
computed using the compressive Camfit gain prescription rule [9].

2. Submitted Systems

All submitted systems use the WBLCMP beamformer (Section[T-T)
as first processing stage and dynamic range compression (Sec-
tion[[.3) as last processing stage. The third submission system uses
an additional deep learning-based post-processing stage after the
wBLCMP beamformer and before the dynamic range compression
stage.

¢ CEC1_E016: Combination of WBLCMP beamformer and
HGR-based hearing loss compensation.

¢ CEC1_E019: Combination of wBLCMP beamformer and
MBDRC.

¢ CEC1_E021: Combination of wBLCMP beamformer, deep
BMFMVDR filter and MBDRC.

For the DRC stage, the parameters in Table [T] were selected
for each of the submitted systems based on the results obtained
on a small development data subset: output gain voloy:,, MBDRC
maximum output level levmax, attack time Tat¢ and decay time Tgec
of the MBDRC, as well as soft-clipping threshold sci,-

Table 1: Parameter values used in the DRC stage for the submitted
systems.

CEC1.E(016 CEC1E(019 CEC1E021

volous (dB) HGR 10 10
levmax (dB) — 120 120
Tatt () — 0.002 0.001
Tdec (8) — 0.01 0.01
sctnr (dB) 117 117 117
3. Results

In this section, we present the simulation results based on the
development dataset. For the evaluation, we first processed the
output signals of our submitted systems using the provided code of
the hearing loss model, before estimating the speech intelligibility
using the provided MBSTOI measure. Figure [2] depicts the
MBSTOI results for the baseline system and the three submitted
systems. It can be observed that all submitted systems achieve
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Figure 2: MBSTOI results of the baseline system and the submitted
systems on the development dataset.

a significant improvement compared with the baseline system.
Furthermore, the differences between the submitted systems in terms
of MBSTOI are relatively small, indicating that neither the more so-
phisticated MBDRC hearing loss compensation nor the DNN-based
post-processing stage achieve a significant improvement in terms
of speech intelligibility upon the system CEC1_E016. Nevertheless,
since the output signals of the submitted systems sounded quite
differently with respect to interferer reduction, artefacts and
high-frequency content, we decided to submit all three systems.
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